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Abstract
Cooperation plays a central role in theories of development, learning, cul-
tural evolution, and education. We argue that existing models of learning
from cooperative informants have fundamental limitations that prevent them
from explaining how cooperation benefits learning. First, existing models are
shown to be computationally intractable, suggesting that they cannot ap-
ply to realistic learning problems. Second, existing models assume a priori
agreement about which concepts are favored in learning, which leads to a
conundrum: learning fails without precise agreement on bias yet there is no
single rational choice. We introduce Cooperative Inference, a novel frame-
work for cooperation in concept learning, which resolves these limitations.
Cooperative Inference generalizes the notion of cooperation used in previous
models from omission of labeled objects to the omission values of features,
labels for objects, and labels for collections of objects. The result is an ap-
proach that is computationally tractable, does not require a priori agreement
about biases, applies to both Boolean and first-order concepts, and begins
to approximate the richness of real-world concept learning problems. We
conclude by discussing relations to and implications for existing theories of
cognition, cognitive development, and cultural evolution.

Keywords: Concept learning; Pedagogy; Cultural Accumulation; First-order
Logic; Algorithmic Learning Theory; Computational Complexity

Introduction

Until recently, researchers investigating learning have been primarily concerned with
the inferences learners make when the source of information is disinterested in the outcome
(e.g. corresponding to the natural world or a random process). However, people routinely
learn valuable information from cooperative others (e.g. family members, teachers, mentors,
friends). In these situations, both the informant and the learner have a shared interest in
the outcome and this shared interest can have a dramatic effect on the learning process.
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Recent empirical research has shown that learning from a cooperative, knowledgeable
informant leads to qualitative changes in learning. In this literature, cooperation is con-
strued to be any situation in which a knowledgeable and helpful informant intentionally
engages a learner to provide examples of a concept and conveys semantically generalizable
information (Csibra & Gergely, 2006; Shafto & Goodman, 2008; Shafto, Goodman, & Frank,
2012; Shafto, Goodman, & Griffiths, 2014). For example, consider an experiment in which
Bonawitz, Shafto, et al. (2011) found that when an informant is helpful, the absence of
information can itself be informative. The researchers presented children with a novel toy.
In one condition, the informant, known to be both knowledgeable and helpful, intentionally
demonstrated a single function of the toy for the children. In a second condition, the in-
formant accidentally triggered the same function in the toy. The researchers then observed
the children playing with the toy. Despite having seen the same evidence, children in the
intentional condition explored the toy less than children in the accidental condition. This
indicates that when a cooperative informant intentionally omits information, that informa-
tion is interpreted to be unnecessary, allowing the learner to draw stronger inferences about
the absence of other functions. This is one instance of a growing literature showing that
cooperation affords stronger, and often qualitatively different inferences than learning from
the very same data in non-cooperative situations (Buchsbaum, Gopnik, Griffiths, & Shafto,
2011; Butler & Markman, 2012; Gergely, Bekkering, & Király, 2002; Gergely & Csibra,
2003; Gweon, Tenenbaum, & Schulz, 2010; Topál, Gergely, Miklósi, ErdH ohegyi, & Csibra,
2008; Xu & Tenenbaum, 2007a).

Indeed, cooperation is central to a number of recent theories of cognitive develop-
ment and human culture. Csibra and Gergely (2009) argue that at a very early age, humans
are prepared to be learners in a “natural pedagogy.” Learners engage a specialized learn-
ing mechanism in response to ostensive cues, which interprets information received in such
situations as more generalizable than the same information in other contexts. Similarly, re-
searchers have proposed that humans have evolved a cultural niche for social learning (Boyd,
Richerson, & Henrich, 2011), that the tendency to cooperate explains our ability to accu-
mulate information over generations in ways that other animals do not (Tomasello, 1999),
and that this kind of cooperation is a uniquely human phenomenon (Csibra, 2007). Though
these proposals hinge on cooperation as a mechanism of driving learning, development, and
human culture, they stop short of a precise explanation of why or how cooperation may
help.

Computational accounts of learning from knowledgeable, cooperative informants pro-
posed in the cognitive science (Shafto & Goodman, 2008; Shafto et al., 2014; Xu & Tenen-
baum, 2007b) and machine learning literatures (Balbach, 2008; Zilles, Lange, Holte, &
Zinkevich, 2008) could provide the link between cooperative informants and cultural accu-
mulation of knowledge. The models in cognitive science differ in the details, but in general,
they all explain cooperative informants as probabilistically choosing examples based on the
true concept, as opposed to sampled at random and then correctly labeled. For example,
Shafto and Goodman (2008) propose a model whereby the informant chooses examples that
tend to maximize the learner’s probability of inferring the correct hypothesis. This sort of
model explains how learning from data chosen by a helpful informant can lead to stronger
inferences than the same data in non-cooperative context—the data chosen by the infor-
mant has been chosen purposefully to disambiguate the correct hypothesis from nearby,
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incorrect hypotheses (cf. Tenenbaum & Griffiths, 2001b).
Research on cooperation in the machine learning literature mainly falls under the

umbrella of Algorithmic Teaching (e.g. Balbach, 2008; Zilles et al., 2008), an offshoot
of the Algorithmic Learning literature (Gold, 1967; Valiant, 1984). In contrast with the
psychological literature, Algorithmic Teaching has focused on deterministic models, which
more easily lend themselves to proofs regarding learnability. Nevertheless, the machine
learning and cognitive modeling literatures have converged to similar proposals (cf. Zilles et
al., 2008; Shafto & Goodman, 2008). Indeed, all of the proposals in the cognitive modeling
and the machine learning literature share two key assumptions: 1) informants know the
learner’s bias, and 2) cooperation works by omission of selected examples.

By bias, we are drawing on the notion of an inductive bias in the machine learning
literature (Mitchell, 1980). It refers to an a priori assumption that some concepts are
favored, all else being equal. In Bayesian probabilistic models, this most often takes the form
of a prior probability distribution over the hypothesis space. A bias can take other forms,
as well. A bias can simply be an ordering on the concepts, where lower ordered concepts
are learned before higher ordered concepts, which is a slightly more general version of the
standard Bayesian prior. The choice of which concepts to admit into the hypothesis space in
the first place is another example of bias; excluding a concept is equivalent to assuming they
are not learnable under any possible data (e.g. have a prior probability of zero). Because
bias is a necessary precondition for demonstrating meaningful learning and generalization
(Mitchell, 1980; Watanabe, 1969), biases are a universal feature of computational models
of learning, as well as all models of cooperative learning that build on such models.

In this paper, we argue that existing computational accounts fail to link cooperation
in learning to cultural accumulation of knowledge, and we present an alternative framework
called Cooperative Inference that does so. We begin by introducing the notion of bias-first
models of cooperative learning—models that possess an a priori bias that prioritizes learning
some concepts over others—and argue that this class includes all previous computational
accounts of cooperative learning (and quite possibly every model of learning in the cognitive
science literature). We show that these bias-first-cooperation models are untenable models
for learning from cooperative teachers for two reasons. First, we show that existing models
are computationally intractable for all but trivially simple domains. Second, through a
series of results, we show that the assumption that informants know the learner’s precise
bias a priori is both necessary for these models and implies unreasonable assumptions about
computation. Just as learning from randomly sampled data requires the use of a bias, so does
learning from a cooperatively selected data. However, there is no single optimal bias but
rather a class of optimal biases, rendering the choice of bias underspecified. Finally, if the
informant and learner do not have the same or extremely similar biases—highly implausible
in any realistically large space—then cooperation does not help a learner successfully acquire
a concept. Together, these results cast significant doubt on the current explanations for
the benefits of cooperation for learning, including explicit models in cognitive science and
computer science as well as less explicit theoretical accounts: there is no explanation that
shows how cooperation can lead to faster learning or cultural accumulation of knowledge
while avoiding complexity problems and without assuming a shared prior.

We then offer a novel framework for explaining the effects of cooperation for learn-
ing called Cooperative Inference. Cooperative Inference consists of two major proposals
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absent from existing models of cooperation. First, it proposes that cooperation precedes
assumptions about biases. Second, it generalizes the notion of cooperation previously ap-
plied to inferences about omitted examples to omitting novel aspects such as features and
other aspects of concepts. The result is a computationally efficient approach to cooperation
that allows a priori derivation of default biases for learning in novel domains. The approach
does not require unrealistic computational resources and works without the need for a priori
agreement between the informant and learner. Moreover, because computational limitations
are relaxed and the informant and learner need not agree on a bias beforehand, learning
can proceed in domains with a vast—even infinite—array of candidate concepts.

The omission of features and other aspects of concepts plays an important role in
Cooperative Inference, allowing an informant to communicate examples as well as infor-
mation about which parts of examples are important and which are not. Additionally, the
relaxation of the assumption that all features are specified in each example allows for new
features to be added to later examples, a process called composition. Composition allows
informants to teach complex concepts by starting with simple concepts and, once learned,
using those concepts as building blocks for later ones. We expound in two domains of suc-
cessive complexity: Boolean concepts, and first-order logic concepts. This demonstrates the
framework on concept learning problems accessible to most models of cooperation and learn-
ing, and a richer, more realistic domain. We provide examples of Cooperative Inference for
Peano arithmetic and natural number that illustrate the potential of our framework to offer
predictions in realistically complex domains where none were previously possible.

The paper follows in 5 sections: we review models of learning from cooperative infor-
mants; we prove limitations of these previous approaches; and we introduce our Cooperative
Inference framework. We conclude by grounding Cooperative Inference in the psychologi-
cal literature on learning and directly linking Cooperative Inference to the cultural accu-
mulation of knowledge and discuss the implications for cognition, cognitive development,
cumulative culture, and education.

Cooperation and learning: Bias-first models

Two main literatures have attempted to explain how cooperation might enable the
type of efficient learning that could lead to cultural accumulation of knowledge: cognitive
science and algorithmic learning. Each intends to capture a similar notion—learning should
be more efficient when evidence comes from a cooperative source. The models that appear
in each literature are also similar in that they assume a learner with a bias and propose
that a cooperative informant selects evidence such that the combination of evidence and
bias will lead the learner to acquire the target concept. In the following, we first look at the
individual literatures separately before providing a general analysis of the constraints that
apply to both groups of models.

Models in cognitive science

Tenenbaum (1999b) proposed a distinction between weak sampling, where observed
examples are generated independently of the concept, and strong sampling, where observed
examples are positive examples drawn from the target concept. Under weak sampling the
distribution of observed examples provides no information about the target concept; after
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the learner rules out concepts that are inconsistent with the examples, the inference is based
only on the a priori probability of candidate concepts. Under strong sampling, however,
examples are randomly drawn from the concept’s positive extension (i.e. the set of true
examples), so the observed examples provide the learner with information about the true
concept beyond merely ruling out inconsistent concepts. Primarily, this leads learners to
assign higher probability to concepts that generalize more conservatively, and the strength
of this inference increases with the number of observed examples.

More formally, in the Bayesian framework the learner’s inference corresponds to the
posterior probability of a concept c given a sample of examples s = {x0, x1, . . . }, P (c|s).
The posterior probability is proportional to the product of the prior P (c), representing the
learner’s expectations independent of any examples, and the likelihood P (s|c), representing
the learner’s expectations about the generation of examples

P (c|s) ∝ P (s|c)P (c) . (1)

Under weak sampling, the evidence s rules out a concept c if it includes an example
that is inconsistent with c, otherwise all remaining concepts are equally probable,

Pweak(s|c) =
{

1 ∀(x ∈ s) : x ∈ c
0 ∃(x ∈ s) : x /∈ c .

(2)

For concepts where membership is not graded, e.g. rule-based concepts, strong sam-
pling suggests that examples are generated uniformly from the concept. Thus, the likelihood
depends both on consistency, as in weak sampling, and the size of the concept,

Pstrong(s|c) =


(

1
|c|

)|s|
∀(x ∈ s) : x ∈ c

0 ∃(x ∈ s) : x /∈ c .
(3)

Given the same data, a learner will make stronger inferences with strong sampling
than weak sampling. Tenenbaum and Griffiths (2001a) showed that this model is a consis-
tent extension of earlier models of generalization from a single example (Shepard, 1987) and
set theoretic similarity (Tversky, 1977). Researchers have found that human learning fits
with strong sampling in a variety of situations where one can expect only positive exam-
ples, including rule-based concepts (Tenenbaum, 1999b), word learning (Xu & Tenenbaum,
2007a), and sets of numbers (Tenenbaum, 1999a). Strong sampling even explains how infor-
mation from a helpful source might lead to stronger inferences (Xu & Tenenbaum, 2007b).
Strong sampling has two limitations: first, it does not allow the possibility of selecting neg-
ative examples. Second, and more importantly, it does not capture the purposeful selection
of examples; intuitively, a cooperative informant does not seem well-explained by random
selection of examples.

Shafto and Goodman (2008) proposed a model of pedagogical sampling, which cap-
tures the idea that cooperative informants choose data purposefully with the goal of increas-
ing the learner’s probability of inferring the correct hypothesis (Shafto & Goodman, 2008;
Shafto et al., 2012; Shafto et al., 2014; cf. Tenenbaum & Griffiths, 2001b). This model
is based on cooperation between the informant and learner: a rational informant selects a
sample that tends to maximize the probability of the learner inferring the target concept,
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and a rational learner assumes that the informant has chosen examples in this way. Unlike
strong sampling, pedagogical sampling explicitly considers what it means to cooperate and
formalizes this notion for both rational informants and learners. The model defines a system
of two equations that capture the recursive relationship between the informant’s selection
of a sample and the learner’s inference of a concept:

Plearner(c|s) = Pinformant(s|c)P (c)∑
c′ Pinformant(s|c′)P (c′) (4)

Pinformant(s|c) = Plearner(s|c)P (c)∑
c′ Plearner(s|c′)P (c′) . (5)

Shafto and Goodman (2008) found that in simple rule-based domains, learners make
stronger inferences only when examples come from a helpful informant, as predicted by ped-
agogical sampling. Shafto et al. (2014) found that pedagogical sampling also predicts the
inferences of learners for prototype and causally-structured concepts. Bonawitz et al. (2011)
showed that even preschool-aged children are sensitive to pedagogical sampling of evidence
in their exploratory play. Buchsbaum et al. (2011) showed that preschoolers used pedagog-
ical cues to infer the necessary sequence of actions to elicit effects. Critically, however, the
model assumes that the informant knows the learner’s precise prior, P (c) (see Equation 5).
By formalizing rational cooperation, and assuming the informant knows the learner’s prior
bias, pedagogical sampling is able to account for the implications of purposeful selection of
evidence for learning.

Models in algorithmic learning

Algorithmic learning traditionally has focused on proving statements regarding learn-
ability, where the source of information assumed to be adversarial or indifferent (e.g. in-
ductive inference, Gold, 1967; PAC learning, Valiant, 1984; and query learning, Angluin,
1988). More recently, researchers have turned their attention to cases where the informant
chooses examples to facilitate learning by a learner with a known bias. Angluin and Kric kis
(1997) defined a algorithmic learning model that included an explicitly helpful informant
for partial recursive function concepts. Shinohara and Miyano (1991), Anthony, Brightwell,
Cohen, and Shawe-Taylor (1992), and Goldman and Mathias (1993) independently devel-
oped what is now called the teaching set model for Boolean concepts. In the teaching set
model, a helpful informant teaches the target concept to all valid learners by selecting the
smallest set of examples that will rule out all but the target concept. In this form, the only
method for ruling out other concepts is by including examples that are inconsistent with
those concepts (but still consistent with the target concept).

More recently in Algorithmic Teaching, researchers have converged on notion of co-
operation similar to that in Cognitive Science. These models use cooperation to allow the
informant to teach certain concepts using fewer examples. Balbach (2008) extended the
teaching set to assume that a rational informant chooses a minimal, sufficient teaching
sample; intuitively, if a student is given a sample of 3 examples, that student should be able
to rule out any concept that can be taught with fewer examples. In the Optimal Teacher
Teaching Dimension (OTTD) the student rules out logically inconsistent concepts (as in
the teaching set) and additionally rules out all consistent concepts that could otherwise be
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taught with a smaller teaching sample (Balbach, 2008). The OTTD begins by using the
teaching set to define the minimal number of examples for each concept but it results in
concepts being taught with even smaller samples. An iterated version (IOTTD) then repeats
this process until convergence.

While IOTTD characterizes cooperation as elimination of concepts based on the size
of the teaching sample, Zilles et al. (2008) defined an alternative cooperative model, Subset
Teaching Set (STS), that allows learners to eliminate concepts based on the content of the
sample. When a learner receives a sample, the learner considers the sample an optimal
informant would choose for all concepts and eliminates any concept whose optimal sample
does not contain the received sample. This sets up a recursive reasoning process, much like
that independently proposed by Shafto and Goodman (2008).

Bias-first cooperation

The two classes of models share an important insight: the power of cooperation derives
from reciprocal reasoning by the informant and learner about what information is (and is
not) necessary to achieve learning. Moreover, in each of these models, the only information
an informant may provide is a subset of the examples in the target concept (the informant
may not, for instance, omit features from these examples). Each model also requires that
the learner has a bias over the space of possible concepts, and that cooperation between the
informant and learner is applied to that bias.

We introduce a framework that encompasses these previous models, bias-first models
of cooperation, in order to analyze their common assumptions. As the name implies, the
most important part of the framework is the use of an a priori learning bias. While the
nature of the bias differs from model to model (e.g. in probabilistic models a bias is a
probability distribution over the possible concepts and in deterministic models a bias often
simply excludes all but a certain class of concepts) each model makes use of some kind of
bias.1 Our analysis will use the deterministic models from Algorithmic Learning Theory
because it allows strong statements about learnability while the similarities between all
bias-first models ensure that our points apply broadly.

In the next section, we investigate the necessary conditions for bias-first models to
show benefits to learning from examples. To presage the results, we find that these models
require assumptions that are both unreasonable and necessary for success, and we therefore
conclude that they are inadequate explanations of implications of cooperation for learning,
development, and culture.

The limitations of bias-first models of learning

Previous models of cooperative learning share a set of basic assumptions: that the
learner has some bias and that the informant selects evidence such that the combination
of evidence and the learner’s bias leads the learner to acquire the target concept. However,
the reciprocal reasoning between informants and learners intertwines possible concepts and
possible examples, leading to a computationally intractable reasoning problem. Moreover,

1Indeed, because all models that demonstrate meaningful learning and generalization assume some bias
(Mitchell, 1980; Watanabe, 1969), these analyses apply to any model of learning that is augmented with
reasoning about cooperative informants.
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just like learning is not possible without an a priori learning bias (Watanabe, 1969), learning
from a cooperative informant is not possible without an a priori bias. Informants, then, must
know what biases learners have in order to choose the examples that will lead the learner to
infer the target concept. However, it is not clear how informants could know the learner’s
biases. In what follows we formalize this quandary, demonstrating that the reliance on biases
is a fatal limitation for previous models.

To do so, we adopt the teaching set framework. This is a deterministic approach that
is well-suited to proofs regarding the conditions under which concepts are teachable. Al-
though the framework assumes deterministic inferences, our key results merely depend on
the existence of a bias which is a key assumption of probabilistic models used in cognitive
science, and the arguments hold for these as well as many other possible models of learning
that apply cooperation over an a priori learning bias. Specifically, the first proof, regarding
computational complexity2, applies to all biases; the second proof demonstrating the neces-
sity of a bias trivially applies to all biases; the third proof, regarding the rational choice of
bias, focuses on a specific kind of deterministic bias and we discuss what this implies for a
more broad class that would include all deterministic and probabilistic biases; finally, the
analysis regarding bias mismatch necessarily applies to all biases.

Building on previous research in cognitive science and machine learning, we focus on
the domain of Boolean concepts (Bruner, Goodnow, & Austin, 1956; Shepard, Hovland, &
Jenkins, 1961; Feldman, 2000; Valiant, 1984; Goodman, 1955). Boolean concept learning
typically focuses on examples with binary features, and allows concepts to be formed of
any subset of the possible examples. The set of Boolean concepts is the powerset of possible
examples in a given domain. Many of the results we show depend on the size and complexity
of the concept space, and the Boolean domain represents a useful lower bound on size and
complexity.

The technical results are presented in the following subsections of this section. Before
beginning, we present an abbreviated and less technical version of each result.

One point, common to many of our technical results, is that the structure of concepts
leads the concept space—the set of possible concepts a teacher and learner must consider—
to grow extraordinarily quickly. Our notation begins with features at the very bottom and
then builds the next level of notation, examples, from combining features with labels. Simple
combinatorics governs the number of possible examples that results from using a certain set
of features and labels—we begin by using boolean features (so ‘red’ which can be labeled
true or false rather than ‘color’ which can be labeled ‘green’, ‘red’, etc.) whose two possible
labels means that the number of examples will follow ne = 2nf . The set of possible concepts
is built on the set of examples much like the set of possible examples is built on the set
of features. Because an example can only either be in a concept or not (equivalent to two
labels) the number of possible concepts will follow nc = 2ne = 22nf .

This means that the number of concepts that might be considered grows considerably
fast. The bar for tractability in many complexity analyses is polynomial growth—where
the time it takes to complete an operation grows according to some fixed exponent, x2 or
even x20, in terms of the size of the input. For concepts built in the manner we have laid

2Computational complexity refers to the resources used by a particular algorithm or program as a function
of the size of its input. It is common to consider how the amount of time until the program finishes changes
as a function of the size of the input (time complexity).
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out, the growth is not just exponential in terms of the number of features (which would
itself be intractable) but double-exponential. This means that any theory or model whose
usefulness depends on the size of the concept space growing slowly (or simply not growing
extraordinarily quickly) will fail.

The growth of the concept space is only a problem, however, if we assume that the
number of features becomes large (or very large in some cases) and a skeptical reader might
question this assumption. After all, the majority of experiments we consider use only a few
features (Feldman (2000) tested concepts with 3 and 4 features while Goodman, Tenenbaum,
Feldman, and Griffiths (2008) tested concepts with 7 features). Suffice it to say that this is
one of many ways in which these experiments differ from the real world; there are vastly
more features with which we can make concepts and many of these features are much more
complex than Boolean features. Concept learning experiments use a few simple features for
at least two reasons: it is easier to conduct a well-designed experiment (e.g. one may ensure
that differences in feature salience do not affect results if there are relatively few features
and they are assigned randomly or counter-balanced, but this is more demanding as the
number of features grows) and one can apply computationally demanding models to these
experiments (more on this later).

So far, we have established that the size of the concept space (the concepts that need
to be considered) grows very quickly in terms of the number of features and that in realistic
cases, the number of possible features is quite large. We have also hinted that one method
for dealing with this problem is to constrain the concept space by including only certain
concepts. This is an instance of a learning bias, known as a concept class, which excludes
certain logically possible concepts. One common concept class is that of the monomials
(see e.g. Balbach, 2008) which includes concepts made of features connected by and (e.g.
‘is_large and not is_red’, ‘is_square and is_spotted’) but no other concepts. This concept
class grows as 3nf which is a significant improvement over the overall concept space 22nf .
Other possibilities include using only concepts with up to k conjunctions (Valiant, 1984),
only including certain features as input to concepts, and only allowing disjunctions (as
opposed to conjunctions).

Our first result, presented in ‘Computational complexity’ concerns the time-
complexity of models of cooperation—the amount of time it takes to complete an operation
as a function of the size of the input—and builds directly from the size of the concept space.
The objective is to determine if, despite being obviously tractable where computational sim-
ulations have been completed (e.g. Bonawitz et al., 2011; Shafto & Goodman, 2008), models
of cooperation are tractable for more general settings, where the number of features may
be considerably greater3. Here we use the the set of features as the ‘input’ so that n corre-
sponds to the number of features. The critical question, then, is the relationship between
the amount of time models of cooperation need as a function of the size of the input.

Informally, models of cooperation operate on a two dimensional space of concepts

3 Here, we adopt the convention (Cobham, 1965) where a system must have polynomial time complexity
(Θ(nk) for some constant k) in order to be tractable. Roughly, this means that a model is tractable as long
as the amount of time it takes to run on a certain input scales with the size of the input raised to some
constant power. So, for example, a model that takes Θ(n2) time to complete would be tractable but one that
takes Θ(2n) would not be. Our analysis remains consistent with more specific arguments for a tractability
standard in cognitive models (e.g. Beal & Roberts, 2009; van Rooij et al., 2011).
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and teaching samples. The informant intends to communicate a target concept and searches
along the teaching sample dimension for a sample that is most likely to communicate the
concept to the learner. In order to do this, though, the informant must calculate the prob-
ability of learning each concept for each possible teaching sample—the informant must
maximize the probability that the learner will acquire the target concept relative to the
remaining concepts. As we discussed earlier, the size of the concept space in terms of the
number of features is a double exponential, so simply searching along this dimension alone
would be sufficient to render models of cooperation intractable, but informants must search
along both concept and sample dimensions. Additionally, many models of cooperation are
reciprocal in nature (Balbach, 2008; Shafto & Goodman, 2008; Zilles et al., 2008) meaning
that this intractable process would be repeated multiple times.

The second result, presented in ‘Ineffective without a bias’ demonstrates that, ignor-
ing complexity concerns, cooperative models are ineffective when no bias is used. In our
treatment, a lack of a bias means that all concepts in the concept space are simultaneously
entertained without preference. The result is that, in order for a learner to acquire a concept
under this condition, all possible examples must be observed. A simple demonstration shows
that this is the case. Imagine that a learner receives all but a single example. There must
then be two concepts in the concept space that are consistent with the received examples:
the target concept and a second concept that is identical to the target concept along each
received example but is labelled opposite for the example not received.

This result indicates that if we want cooperative models of learning to be more ef-
fective than simply enumerating labels for all possible examples, then a bias is necessary.
In ‘Many optimal biases’ we consider how this bias might be chosen. We look specifically
at how a rational model of cooperation might select a bias. According to the principle of
rationality, the optimal bias—the one that results in the lowest average cost—would be se-
lected. We establish a simple method for calculating cost: the number of examples it takes
to communicate a concept averaged over the concept space.

Using this, we find the optimal bias for two different classes of bias. One class, the
ordered bias, simply arranges concepts according to a priority and, when multiple concepts
are consistent with a sample, leads the learner to acquire the concept with the highest
priority. In this class of bias, there is no single optimal bias but rather a collection of biases,
all of which are equally optimal. The story is similar for the more powerful functional bias
which may redefine which examples are consistent with which concepts. We show that there
is a collection of optimal functional biases rather than a single one.

Finally, in ‘Impossible for unknown bias’, we consider how models of cooperation work
when the teacher does not know the bias of the learner. We assume a simple and conservative
case where the learner uses no bias and the informant’s bias considers only some subset of
the concept space. In such a case, the success of models of cooperation depends on the
concepts shared by the learner’s and the informant’s bias: obviously only concepts that
are shared by both can be successfully communicated, but even this is not guaranteed. One
possibility is that the informant will provide examples sufficient to rule out all concepts other
than the target concept according to the informant’s bias but not according to the learner’s
bias. To determine how probable this possibility is compared the possibility of successful
acquisition of the concept, we assume that the informants bias is constructed by randomly
sampling concepts to exclude from the informant’s bias. (This is equivalent to assuming that
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the informant has no information about the learner’s bias). The probability that a random
concept in the informant’s bias can be successfully taught depends on how many concepts
in the learner’s bias that the informant’s bias omits. However, we show that unless the size
of the informant’s bias grows at a similar rate to the size of the concept space—and thus
implies intractability and ineffectiveness according to our first two results—then successful
teaching becomes vanishingly unlikely as the size of the concept space increases.

Together, our 4 results show that, using existing models of cooperation, a bias is
necessary in order for teaching to be tractable and effective. However, the principle of
rationality does not offer a method for coordinating bias, and successful teaching rapidly
becomes unlikely when the learner and informant do not know each others’ biases. For the
remainder of this section we present the technical results. Following that, we introduce a
novel model of cooperation that alleviates these problems and provides new insights into
the relationship between cooperation, learning, and representation.

Notation

We begin with the notation for Boolean concepts and formally define the teaching set
model. Later, the Boolean notation will be extended to first-order logic concepts.

Let F = {f0, f1, . . . } be the feature space. Let the instance space be the function space
from F to the Boolean labels X = {F,T}F . And let the concept space be the function space
from X to the Boolean labels C = {F,T}X . A concept class is some subset of the concept
space C ⊆ C.

Ordered pairs formed of features and Boolean labels such as those found in an instance
(f, b) ∈ x are referred to as specifications and b takes on either value {F,T}. Ordered pairs
between instances and Boolean labels such as those found in concepts (x, b) ∈ c are referred
to as examples. Finally, let the sample space be any set of examples that can be found in a
concept, S = {s | s ⊆ c ∧ c ∈ C}. A concept and sample are consistent if each example in
the sample is also in the concept,

Cons(s, C) = {c | s ⊆ c ∧ c ∈ C} . (6)

Within the teaching set framework, a learner is both consistent and class-preserving.
Consistent means that learners will only learn concepts that are consistent with the teaching
sample. Class-preserving means that learners will only learn a concept that is in the concept
class. Equivalently, the learner can be thought of as beginning with all concepts in the
concept class and ruling out concepts that are inconsistent with the sample.

Assuming that the informant knows the concept class of the learner, a teaching set is
the sample with the fewest examples that will teach the target concept for any consistent,
class-preserving learner—i.e. that will rule out all other concepts in the concept class.

Definition: teaching set. The teaching set for a target concept is the minimal
sample that teaches the target concept to all consistent and class-preserving learners,

TS(c, C) = arg min
s∈S

{|s| | Cons(C, s) = {c}} . (7)

The teaching dimension for a target concept is the size of the teaching set.
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Computational complexity

We begin by considering the time complexity of bias-first models of learning. A major
challenge for this endeavor is that these models represent a computational level (Marr, 1982)
or rational analysis (Anderson, 1991; Chater & Oaksford, 1999) explanation and thus do
not specify implementation details. With this in mind, the following analysis gives special
attention to the bounds within which all sampling models must fall. The complexity of
bias-first models depends on two basic components: the complexity of the concept space
considered, and the cost of applying the algorithm over that space. The Boolean concept
domain (e.g. Bruner et al., 1956; Feldman, 2000; Nosofsky, Palmeri, & McKinley, 1994;
Shepard et al., 1961; Valiant, 1984) represents a reasonable minimal set of concepts, and
thus lower bound on concept complexity, so that any finding of intractability should hold
for more complex domains. We also show that while the implementation of many bias-first
models have extreme complexity cost, bias-first models remain intractable even when the
costs specific to a particular implementation are ignored.

First, consider the growth of the size of the sample space in terms of the number of
features. Using n = |F|, each Boolean concept contains 2n examples. Given a target concept
c, the set of candidate teaching samples is the set of all subsets of c and has a size,

|S| = |P(c)| = 2|c| = 22n
. (8)

This implies that a model with polynomial complexity Θ(nk) in the number of features n
must then have Θ(log log m) complexity in number of teaching samples m in order to be
computationally tractable.

Most models define cooperation as the selection of a sample that maximizes the
likelihood that the learner acquires the concept (Shafto & Goodman, 2008; Tenenbaum &
Griffiths, 2001a) or the smallest teaching sample that guarantees the learner will acquire the
concept (Balbach, 2008; Zilles et al., 2008). Thus, a general template for sampling models
is an algorithm that computes the learner’s inference for each sample and searches for
the teaching sample that maximizes some measure, such as the likelihood that the learner
acquires the concept,

arg max
s

Plearner(c|s) . (9)

The complexity of calculating of the probability Plearner(c|s) can be expanded4 as (e.g.
Shafto & Goodman, 2008; Tenenbaum & Griffiths, 2001a),

Plearner(c|s) = P (s|c)P (c)∑
c′∈C P (s|c′)P (c′) . (10)

The probability Plearner(c|s) can be found by setting up a |S| × |C| matrix and com-
puting P (s|c)P (c) for each unique pair of concepts and samples. For each sample, the sum
can be computed from a row in the matrix and then each P (s|c)P (c) is divided by its re-
spective sum. If each P (s|c)P (c) is calculated at constant cost, doing so for all c ∈ C has

4 This assumption additionally allows the extension of this analysis to deterministic models (e.g. Balbach,
2008; Zilles et al., 2008) which require the computation of TS(c, C) for each c ∈ C. Both the probabilistic
calculation of P (s|c)P (c) and the deterministic calculation of TS(c, C) require at minimum constant time.
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Θ (|C|) complexity, as do the sum and division operations. This must then be calculated for
all s ∈ S, resulting in

Θ (|C||S|) = Θ
(
m2
)

= Θ
(

22n2
)

. (11)

This result applies to all models where an informant intentionally selects examples
that are most helpful to the learner, such as non-iterative derivatives of the teaching set
model (e.g. OTTD in Balbach, 2008). The analysis also applies to the first step of iterative
versions of both probabilistic (Shafto & Goodman, 2008) and teaching set (STS in Zilles
et al., 2008; IOTTD in Balbach, 2008) models, and is thus a lower bound on their com-
plexity. Each of these models, then, has double-exponential time complexity and is far from
tractable.

A potential criticism of this approach is that these models intend to describe the
outcome of the process rather than the specific implementation (e.g. Shafto & Goodman,
2008; Shafto et al., 2014). It is worth considering, then, the general complexity requirement
that any theoretical implementation must satisfy in order to remain tractable. The size of
the Boolean sample space is Θ

(
22n) in the number of features. In order to remain tractable

in the number of features a cooperation model must have a complexity of Θ(log log m) in the
number of samples. This means that bias-first learning in eq. (9) cannot be made tractable
by even the most generous stand-in psychological process. Consider a model that possesses
an a priori a list of Plearner(c|s) for all s ∈ S and thus requires no explicit calculation.
Selecting the index of the greatest entry in a list of Plearner(c|s) has a complexity of Θ(m)
(Cormen, Leiserson, Rivest, & Stein, 2009) in the number of concepts and thus Θ

(
22n) in

the number of features. Thus even the most generous implementation-level assumptions do
not allow for such models to be tractable.

As specified, existing bias-first models are not tractable accounts of cooperation.
Moreover, the bias-first approach disallows any tractable account of cooperation because
cooperation is by definition applied over the set of possible concepts and samples. The space
of concepts and the space of possible teaching samples grows so quickly as the number of
features increases that even the most generous possible assumption—that the informant
only has to select the best examples using already computed calculations—results in an
intractable model. This is, of course, assuming that all candidate concepts are considered
with non-zero weight—it is not a coincidence that very few models have utilized such a
concept space without some ad hoc restriction. The plausibility of sampling models, then,
depends entirely on how the concept space is restricted. We turn our analysis to this for
the following three sections.

Ineffective without a bias

Models of cooperation have assumed various learning biases. But is it necessary to
adopt a bias? Results for learning without cooperation have shown that, in the absence
of a bias that prioritizes some concepts, even after observing some evidence, all consistent
concepts are equally probable. Thus meaningful learning requires an a priori bias (in the
sense that it would support generalization to not previously observed objects) (see Ugly
Duckling Theorem in Watanabe, 1969, p. 376). A similar result holds for bias-first models
when learning from a cooperative source; even with a cooperative informant there is no
meaningful learning without a bias.
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Theorem: Learning without bias Given a set of n features, Fn, and a concept
class, Xn = {F,T}Fn , Cn = {F,T}Xn . The teaching set for any c ∈ Cn must include every
instance in Xn labeled according to the concept such that TS(c, Cn) = c.

Proof Let s, the teaching sample for c, label all but m instances in c, such that
|c \ s| = m. The set of unlabeled instances can be used to form a set of concepts X∗ = {x |
(x, b) ∈ c \ s}, C∗ = {F,T}X∗ . These concepts may be used to construct Cons(s, Cn), the
set of all concepts in Cn consistent with s,

Cons(s, Cn) =
{

s ∪ c′ | c′ ∈ {0, 1}X∗
}

. (12)

It follows that Cons(s, Cn) = {c} iff X∗ = ∅—i.e. m = 0 and no instances are left
unlabeled—and thus TS(c, C) = c. �

Without a bias, previous models of cooperative learning allow a learner no general-
ization beyond received examples. This means that an informant must label every instance
in order to successfully teach the target concept—learning from a cooperative informant is
no better than other sampling methods, all of which trivially allow a learner to learn a con-
cept when allowed to sample the entire example space. This result, that a bias is necessary
for cooperation, along with the previous result, that a restricted concept class is necessary
for tractability, together point to the paramount importance of the choice of bias for these
models.

Many optimal biases

If a learner needs a bias in order for cooperation to be effective, the most sensible
choice for the bias is the one that would, on average, lead to the most efficient learning. To
analyze optimal biases, we formalize two types of biases that previous researchers have used.
The first, ordered bias, adopts a total pre-order on the concepts in C such that lower ordered
concepts are given priority. One example of this is the Occam’s Razor bias (Balbach, 2008)5

where concepts are judged by the number of terms (separated by ‘or’s) in the description,
e.g. ‘feps are red and square’ which has one term would be given priority over ‘feps are red or
feps are blue and square’ which has two. The second, functional bias, permits a redefinition
of the set of concepts that are consistent with any sample. This bias is more complex but also
opens up many more possibilities. Examples of this include pedagogical sampling (Shafto
& Goodman, 2008) and the Subset Teaching Set (Zilles et al., 2008) where a learner rules
out concepts based on a prediction of the teaching set rather than based on whether or
not an example is consistent. For both ordered and functional biases, we show that there
are many optimal biases and thus no a priori rational choice. Moreover, agreement about
a bias through prior communication would allow arbitrarily efficient learning—effectively
equivalent to telepathy.

Formally a learner with an ordered bias learns the lowest-order concept that is con-
sistent with the examples. Thus, an ordered bias amounts to a modification of the Cons()
function. Given c and �, we use C�c = {c′ | c′ ∈ C ∧ c′ � c} to refer to the set of concepts
of the same or lower order as c and we modify the consistent and teaching set functions as

5For a probabilistic version, see Goodman et al. (2008).
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follows,

Cons(s, C,�) = {c′ | s ⊆ c′ ∧ c′ ∈ C�c} and (13)
TS(c, C,�) = arg min

s∈S
{|s| | Cons(s, C,�) = {c}} . (14)

Next, we develop a novel ordered bias called the Hamming distance bias6 and show
that it minimizes the average teaching dimension and is thus optimal. Informally, the proof
is as follows. Each ordered bias includes a least-element concept that is of equal or lower
order to all other concepts in the concept class. Any ordered bias would, at minimum,
require the teaching set of a target concept to include examples sufficient to rule out the
least-element concept (because it is necessarily in the set of concepts of lower order than
the target concept). For the Hamming distance bias, we show that the teaching set of each
concept is the minimal set of examples sufficient to rule out the least-element concept and
therefore it is a minimal ordered bias.

Theorem: Hamming distance bias Let h(c1, c2) be the Hamming distance between
c1 and c2 such that h(c1, c2) = |c1 \ c2|. Given an origin concept, c∗, the Hamming distance
bias is �h(c∗)= {(c1, c2) | c1, c2 ∈ C ∧ h(c∗, c1) ≤ h(c∗, c2)} and is an optimal ordered bias.

Proof Let �c∗ be an ordered bias with c∗ as a least element, i.e. c∗ �c∗ c for all c ∈ C.
Then c∗ is in C�c∗c for all c ∈ C and in order to rule out c∗, the teaching set for any c must
include c \ c∗,

TS(c, C,�c∗) ⊇ c \ c∗ . (15)
For �h(c∗) and any pair of concepts c1, c2 ∈ C such that c1 6= c2, if c1 is of lower order

than c2, c1 �h(c∗) c2 (i.e. |c1 \ c∗| ≤ |c2 \ c∗|), then the teaching set formed from eq. (15)
will also rule out c1, (c2 \ c∗) * c1. So c2 \ c∗ is sufficient to rule out any concept of a lesser
order, i.e.

Cons(c2 \ c∗, {c1, c2},�h(c∗)) = {c2} (16)
TS(c, C,�h(c∗)) = c \ c∗ . (17)

From eq. (15), the Hamming distance bias results in the minimal size teaching set for each
concept and is thus optimal. �

For example, if the origin concept is the concept with all negative examples7, c∗ =
FFF . . . , the teaching set for each target concept c will include only the examples that differ
from c to c∗ or, in other words, the set of positive examples in c. Thus the average teaching
dimension for the Hamming distance bias is the average number of positive examples in each
concept, or 2n

2 = 2n−1 for a concept space with n features. The Hamming distance bias is
optimal without regard to the origin concept, so the average teaching dimension would not
change if the origin concept were changed. What does change, however, is the number of
examples required to learn particular concepts—especially the origin concept which can be
learned from an empty teaching sample.

6Named for Hamming (1950), the Hamming distance between two binary vectors is equal to the number
of bit positions where the two vectors differ, so that 000, 000 are separated by a Hamming distance of 0 while
000, 101 are separated by a Hamming distance of 2.

7 For abbreviation, we use strings to stand in for samples and concepts, e.g. c = TFT* would be a sample
that labels the the first and third examples as true, the second as false, and does not label the fourth. These
strings are over {F,T, ∗} such that (xi, A[i]) ∈ s for all A[i] 6= ∗.
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Rational selection of a functional bias is similar to that of an ordered bias, with the
exception that, because a functional bias may modify which concepts are consistent with
which samples in any way, there is no analogous constraint to eq. (15). Thus, a functional
bias may use any set of examples to teach a target concept so long as each concept is taught
with a different set of examples.

The minimal functional bias would assign a concept to each unique s ∈ S, beginning
with the smallest. The first concept would be taught with s = ∅, the following concepts
would be taught with samples where |s| = 1, and so on. For |s| = i, and the number of
features, n, the number of unique samples in S is

(2n

i

)
2i. It is outside of the scope of this

paper to determine the average teaching dimension for the optimal functional bias, though
it is clearly smaller than that of the optimal ordered bias.

Both the optimal ordered and functional biases include free parameters that allow
any concept to be taught without any examples at all. Thus, for each concept that can be
taught, there is at least one unique optimal choice of bias. Indeed, if a priori selection of
the optimal bias is allowed, learning does not require any examples. However, there is no
single bias that is optimal for all concepts.

Thus far, we have shown that a bias is necessary—if the informant and learner do
not use a bias, then there is no way to efficiently provide examples. We have also shown
that rational selection does not help with this problem—without knowledge of the target
concept, there are many optimal biases.

Impossible for unknown bias

Our final look at bias-first models concerns the situation where the informant does
not precisely know the bias of the learner—i.e. where there is some difference between
what the informant would guess for the bias of the learner and the actual bias. For the
following analysis, we will use classes Ci, Cl ⊆ C to stand in for more complex biases
without a loss of generality (see eq. (13) ). The informant’s class Ci is used to determine
a teaching set that is consistent only with the target concept, si = TS(c, Ci), while the
learner’s class Cl is the class that is preserved when the learner uses the sample to rule
out other concepts, C ′ = Cons(TS(c, Ci), Cl). Given Ci and Cl, we say that a concept c is
teachable iff {c} = Cons(TS(c, Ci), Cl) and we use the following indicator function such that
Teach(c) = True if the concept c is teachable and False otherwise.

To begin with, concepts not in either Ci or Cl are trivially unteachable. Of the concepts
in the intersection of the informant and learner’s classes c ∈ Ci ∩Cl, a concept is teachable
iff each example in the teaching set from the learner’s perspective: TS(c, Cl) is included
in the teaching set from the informant’s perspective TS(c, Ci). Each example in TS(c, Cl)
represents a necessary condition for the teachability of c.

The teaching set from the informant’s perspective includes an example only when it is
necessary to rule out a concept that has not already been ruled out by other examples in the
teaching set. We refer to such concepts as adjacent concepts. Given a sample, we say that a
concept is adjacent along an example when the concept would be ruled out if the example
is included in the teaching set but not otherwise. To illustrate, imagine that the teaching
set for a target concept from the learner’s perspective is TS(c, Cl) = FFT∗. The informant’s
class must have included at least one concept adjacent to the third example (either FFFF
or FFFT) otherwise TS(c, Ci) will not include that example (e.g. TS(c, Ci) = FF ∗ ∗).
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To determine the probability that a concept is teachable, we model a process where
the informant’s class is determined by randomly drawing without replacement from the set
of concepts. Then, for each example, the hypergeometric distribution gives the probability
that all adjacent concepts are removed. Let U = |C| be the size of the universe of concepts
and R be the number of concepts removed from C to get the informant’s class of size T = |Ci|
such that U = R + T . Given an example in the teaching set from the learner’s perspective,
let Ae be the number of adjacent concepts,

P (Teach(c) = False | R, Cl, e) =
(Ae

Ae

)(U−Ae

R−Ae

)(U
R

) . (18)

As the number of features becomes very large, n → ∞, the number of concepts, U ,
does as well. If R remains constant, then limn→∞ P (Teach(c) = F) = 0 meaning that a
target concept will be teachable in the limit. But, because U = R + T , a constant R would
mean that the informant’s concept class has a double exponential increase, i.e. O(T ) = 22n ,
and this implies an implausible lack of constraints on the size of a concept space. Consider
the result from the previous complexity analysis: at best, the complexity of a bias-first model
is the square of the size of the concept space. If T increases less than a double exponential
such that R approaches U in the limit R = U − T → U , the target concept will not be
teachable.

Stirling’s approximation of the factorial—appropriate because both U and R are very
large—provides a simplification of the hypergeometric distribution in for n→∞,(Ae

Ae

)(U−Ae

R−Ae

)(U
R

) ∼ (U −Ae)U RU

UU (R−Ae)U
. (19)

Then, because R → U , limn→∞ P (Teach(c) = F) = 1; concepts are, in general, unlikely to
be teachable.

This result depends on a set of reasonable assumptions: that the set of possible features
is large, that the set of concepts considered by the informant and learner is much smaller
than the set of all concepts, and that the informant cannot predict which concepts are in
the learner’s concept class. Given these assumptions, the probability that a concept could
successfully be taught via sampling approaches zero. The fact that more complex biases,
such as ordered, effectively use concept class bias for a given target concept (see eq. (13))
means that this result applies to all such biases.

To summarize, bias-first approaches suffer from the dependence on the assumption
that the informant precisely knows the bias of the learner. Because bias-first learning works
through the iterative application of a bias over examples, it is computationally intractable.
The learner also must use a bias because efficient learning is impossible without a bias.
However, there is no single rational choice for bias. If the informant and learner choose a
bias without coordination, successful teaching becomes impossible as the number of features
grows. Individually, any of these results would be a significant but manageable problem for
bias-first models of cooperation. Together, they suggest that bias-first models do not explain
how cooperation could lead to either efficient learning or cultural accumulation of knowledge
for even reasonably-sized learning problems.
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Cooperative Inference

In what follows, we propose a framework that can explain how cooperation leads
to efficient learning and cultural accumulation of knowledge. Previous approaches use the
omission of labeled objects (or, by symmetry, the selection of labeled objects) to facilitate
learning. Building on these approaches, we consider the cooperative omission (or indications
of relevance) of other aspects of a concept: specified features, labeled objects, and labeled
collections of objects. The result is a generalization of the notion of cooperation. This
change leads to a number of important consequences: informants may successfully teach in
unbounded concept spaces, the complexity of learning from a cooperative informant depends
on the complexity of the target concept irrespective of the concept space, and there is a
natural representation for concepts.

Moreover, these advantages enable learning in domains that go well beyond those
considered previously in the literature. To illustrate, we extend Cooperative Inference to
learning concepts in first-order logic. We show how the basic operations of first-order logic—
quantification, composition, and predication—can be learned from a cooperative informant,
and illustrate this with demonstrations of learning arithmetic and natural number concepts
via examples.

One way to understand Cooperative Inference is to think of it as a form of learning
bias. Whereas bias-first models critically hinge on restricting the concepts space through
an a bias unrelated to cooperation and then applying a version of cooperation, Cooperative
Inference proposes that cooperation is the bias. Thus, in contrast with previous approaches
that assume learning biases are optimized to learn from the world, Cooperative Inference
proposes that biases are optimized to learn from cooperative informants. Thus, while it
should be possible to combine the biases of Cooperative Inference with other situation-
specific biases, Cooperative Inference itself should remain consistent wherever the situation
applies.

Cooperative inference applies when some part of a concept is omitted by an informant
in order to communicate that concept helpfully to a learner. Traditionally, this only occurs
when an example is omitted from the concept, but there is no reason to suppose that
informants are limited to this. We consider, in turn, what cooperative inferences are made
when an informant omits features, labels, and object specifiers. While the result is different
at each step, the underlying principle is the same: the learner infers that the informant is
omitting information in order to helpfully communicate the concept, and the informant,
aware of this, does just that.

Cooperative Inference for Boolean concepts

First, we consider the domain of Boolean concepts, the most common domain for
previous work in cooperation. As stated earlier, Cooperative Inference applies a notion of
cooperation to the intentional omission of aspects of concepts other than examples. For
Boolean concepts, we introduce two such inferences: the omission of objects according to
concept label (e.g. all objects labeled ‘false’) and the omission of features within objects.

The first Cooperative Inference we discuss for Boolean concepts regards omitting
label objects. Rather than omitting objects individually, an informant may omit objects
according to the concept label (i.e. omit all examples labeled not in the concept or all
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Table 1
Cooperative Inference for two units of analysis

Object-Level Specification Object Concept

(f, v)
{

(f, v),
...

} 
{

(f, v),
...

}
,

...


Collection-Level Specification Object Collection Concept

(f, v)
{

(f, v),
...

}


{
(f, v),

...

}
,

...
(f, v),

...







{
(f, v),

...

}
,

...
(f, v),

...


,

...


Two types of concepts we use to demonstrate Cooperative Inference are shown with
the unit of analysis in bold. In object-level concepts, an example is a set of feature-
value pairs (called specifications) and a concept is a set of examples. In collection-
level concepts, objects are identical to the object-level examples; collections are sets of
objects along with collection-level specifications; and a concept is a set of collections.

examples labeled in the concept). Once a cooperative learner is given a teaching sample
with only one concept label (either positive or negative), the learner can infer that the
informant has given all examples with that label and thereby determined the concept. 8

For the second type of inference, we consider the omission of features from an example
that forms what we call a partial example. A partial example differs from the typical example
in that any feature specification may be omitted. When presented with a partial example,
cooperative omission implies that it stands in for all consistent (fully-specified) examples.
A single partial example can thus effectively stand in for many consistent examples. For
instance, the example with only a single specification, ‘red’, might stand in for both ‘red
and circle’ as well as ‘red and square’.

Let a partial example be any subset of a typical example X ′ = {x′ | x ∈ X ∧ x′ ⊆}.
When a partial example is given to a cooperative learner, the learner infers a set of matching
examples denoted by Match(s, C):

Cons(x′,X ) = {x | x′ ⊆ x} , (20)

Match(s, C) =
⋃

x′∈s

Cons(x′,X ) . (21)

When a cooperative informant omits features from examples, the learner infers that
the the example stands in for all matching examples. Imagine the addition of a third feature
to our intuitive example, so that we have ‘red’, ‘square’, and ‘small’. For concepts such as
‘feps are red or feps are small and square’, a cooperative informant would use all three

8Cooperative omission, together with the unrealizability of some objects, can be used to justify a principle
of truth (see e.g. Johnson-Laird, 2001) where the true portion of a concept is prioritized over the false portion.
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features, but for others, such as ‘feps are red and square’, such an informant would simplify
the learning process by omitting the feature ‘small’. Match() can be viewed as defining the
extensional semantics of such omissions.

This use of partial examples allows for a powerful improvement in the efficiency of
learning. First, we show that with Cooperative Inference an informant only needs to use
features known to be relevant in order to teach a concept. A feature is considered relevant
if, for at least one pair of differently-labeled instances in the concept, the feature is the only
feature to change9:

Relevant(c) = {f | (x0,F), (x1,T) ∈ c} , (22)
where x0 4 x1 = {(f,F), (f,T)} . (23)

Theorem: Relevant instance space Given a concept, c, let FR be a subset of F
that contains all features that are relevant with respect to c and XR be the set of partial
instances formed of FR, XR = {F,T}FR . Using Cooperative Inference, an informant may
successfully teach c by labeling each partial instance x′ ∈ XR according to any consistent
full instance, x ⊇ x′, x ∈ X .

Proof The theorem follows from the definitions. Given an example in the teaching set,
(x′, b) ∈ s, x′ ∈ XR, consider the set of matching examples sx′ = {(x, b) | x ∈ Cons(x′,X )}.
Note that each example in sx′ is a superset of x′ and so must have the same label for each
relevant feature. Assume for the sake of contradiction that two examples in sx′ are differently
labeled, (x,F), (x∗,T) ∈ sx′ . We may build a series of examples x0, x1, . . . xi beginning with
x0 = x, and for each step, changing the label for one feature in x0 to match x∗ such that
i = 1

2 |x4 xi|. Because, x0 and xn are differently labeled, there must exist some i such that
(xi, b), (xi+1, b) ∈ c. This implies that the feature f such that xi 4 xi+1 = {(f,F)(f,T)} is
relevant and is a contradiction. �

Therefore, an informant who knows that only ‘red’ and ‘square’ are relevant to the
concept ‘fep’, may omit the entire set of irrelevant features and teach a concept using only
those two features.

Until this point, our formal discussion of concepts used an extensional sense, where
a concept is defined by the set of outputs for all inputs. The alternative, intensional sense,
is used to represent concepts as a rule that generates the appropriate output label based
on the content of input and is more similar to our intuitive discussion. For example, the
concept with intension c = f0 ∨ f1 (i.e. ‘feps are red or square’) has the following extension
over two features

f0 ∨ f1 =


({(f0,F), (f1,F)},F)
({(f0,F), (f1,T)},T)
({(f0,T), (f1,F)},T)
({(f0,T), (f1,T)},T)

 . (24)

So, for the example {(f0,F), (f1,F)}, the extension provides the label F and for the exam-
ple {(f0,F), (f1,T)}, the extension provides the label T. However, the extension does not
provide a label for examples beyond the set of four in eq. (24).

Definition: Intensional form A literal is a negated or unnegated variable, e.g.
l1 = f is true for (f,T) and l2 = f is true for (f,F). A term is a conjunction (i.e. ‘and’) of

9Here, 4 refers to the symmetric difference such that A4B = (A \B) ∪ (B \A).
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Table 2
Intension and extension in Cooperative Inference

Object-Level

ext2into∨
x∈c

 ∧
(f,v)∈x

(f = v)


int2exto⋃
t∈c

 ⋃
(f,v)∈t

{(f, v)}


Collection-Level

ext2intc∨
x∈c

 ∧
o ∈x

(∃oi)ext2into(o) ∧
∧

(f,v)∈o

(f = v)


int2extc⋃
t∈c

⋃
o∈t

{int2exto(o)} ∪
⋃

(f,v)∈t

{(f, v)}


Cooperative Inference indicates a relationship between the intension and extension
of a concept for both concept types. This relationship takes the form of a pair
of conjugate functions for each type. Here, the subscript o denotes the object-level
version of these functions and the subscript c denotes the collection-level version.

literals such as t = l0 ∧ l1 ∧ . . . and is false unless all of the literals are true. A clause is a
disjunction (i.e. ‘or’) of literals such as cl = l0 ∨ l1 ∨ . . . and is true unless all of the literals
are false. Each term and clause is associated with a set of literals such that t =

∧
l∈Lt

l and
cl =

∨
l∈Lcl

l. A concept is in Disjunctive Normal Form (DNF) if it is a disjunction of terms
such as (l∧ l∧ . . . )∨ (l∧ l∧ . . . )∨ . . . and a concept is in Conjunctive Normal Form (CNF)
if it is a conjunction of clauses (l ∨ l ∨ . . . ) ∧ (l ∨ l ∨ . . . ) ∧ . . . .

The intensional concept f0 ∨ f1 will label instances outside of eq. (24), whereas the
extensional concept is only defined for the included examples. The intension f0∨f1 gives the
positive label to the instance {(f0,F), (f1,T), (f2,F)} and the negative label to the instance
{(f0,F), (f1,F), (f2,F)} while both would be undefined for the extensional definition in
eq. (24). Given an extension in the form of a set of examples, an intensional representation
can be derived through cooperation and we briefly describe this process.

Cooperative Inference provides a method to derive an intensional concept from an
extensional definition. The first method is to collect all of the positive examples and from
each, form a term that is true when the specifications for that example are true and false
otherwise. At this point, each positive example has an analogous term that evaluates to true
for all instances in positive examples. To form an intensional concept, these terms then need
to be ‘or-ed’ together. The resulting concept would be one that is true for all instances in
positive examples and false otherwise. Through a similar process, the negative examples can
be ‘and-ed’ together to form a concept that is negative for all of the instances in negative
examples and positive otherwise.

If we use the set of examples in eq. (24), we can form an intensional concept. From
the positive examples, we have c = (f0 ∧ f1) ∨ (f0 ∧ f1) ∨ (f0 ∧ f1). In the case where
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the provided examples are partial examples, the learner can infer the concept label for
instances not covered by the examples. If the intensional form of a concept is known, the
output label can be predicted for any instance defined over the same features and thus
intensional concepts conveniently provide a set of potentially relevant features. Thus, an
informant can communicate an intensional concept through the use of partial examples via
ext2into in table 2.

Just as intensional concepts can be derived from the extensional definition, a sample
compatible with Cooperative Inference can be derived from an intensional concept. This
function int2exto in table 2 implies a logical correspondence between a teaching set for
a concept constructed of partial examples and the intensional form of that concept. If an
informant has a concept stored intensionally, such as c = f1 ∨ f0 ‘feps are red or square’,
the informant can convert this definition to the teaching sample {{(f0,T)}, {(f1,T)}}.

This means that logical operations of one form can be leveraged for the other, e.g.
simplifying the intensional definition results in an equivalent simplification of the extensional
teaching set. For example, the rule used to combine terms and clauses in the classic Quine-
McCluskey algorithm (J. C. Roth, 2013)—e.g. ‘feps are either red and small or red and
not small’ → ‘feps are red’—can be used to simplify the intension of a concept and then,
through Cooperative Inference, the simplified intension can be used to generate a simplified
extension.

This equivalence between intensions and extensions based on Cooperative Inference
has powerful implications for learning and cultural accumulation of knowledge. For learning,
it implies that knowledge obtained by one individual is effectively transferable to another
individual in the form labeled partial examples. Effective transfer of knowledge between a
pair of individuals is the first step toward obtaining cultural accumulation of knowledge, a
point that we will return to and make more explicit in the Discussion.

Cooperative Inference has implications for the representation of knowledge as well.
If an informant has a concept in DNF form, a concept can be inferred from the results of
using partial examples, Match(s,X ) where s = int2exto(c). This process can be reversed
with c = ext2into(s). This correspondence between the intensional form of a concept and
its teaching set suggests that DNF is a natural representation for cooperation. When a
concept is stored in this way, cooperation no longer involves searching a space of teaching
samples for the solution; rather, the solution is the representation itself. In this way, learning
via Cooperative Inference could inform learning biases through representation. Indeed, a
DNF-based representational bias is consistent with some of the most successful models
and experiments in concept learning (Feldman, 2000; Goodwin & Johnson-Laird, 2011;
Goodman et al., 2008).

In summary, whereas bias-first models are incapable of learning in any domain where
the bias of the learner cannot be precisely known, Cooperative Inference overcomes this
limitation. Cooperative Inference generalizes a notion of cooperation that allows the infor-
mant to effectively induce a situation-specific bias that is tailored to the target concept.
This means that the complexity of teaching a concept with Cooperative Inference scales
according to the complexity of the concept rather than the concept space. Finally, Coop-
erative Inference points to a fundamental connection between the teaching of concepts and
intensional representation of concepts.
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Limitations of bias-first models do not apply to Cooperative Inference

We previously leveled two sets criticisms against bias-first models of cooperation.
Three results regard the selection of a bias: successful teaching requires a bias, there is
no single rational bias, and without coordination bias mismatch becomes a problem. Ad-
ditionally, because previous models require the informant (and often the learner as well)
to consider the entire space of teaching samples and concepts, they are computationally
intractable as the number of features increases. Now that we have introduced Cooperative
Inference, it is worth discussing how our model avoids these criticisms.

The adoption of bias is key to meaningful learning. Previous models in cognitive
science and machine learning adopt a bias in the form of an a priori ordering on the concepts,
which satisfies the need for a bias, but the question of how the learner and informant choose
and coordinate their biases leads to other problems. Because there are many optimal biases,
the learner and informant cannot ensure that they select the same bias based on this criteria.
In the absence of a method for coordinating the bias, there is no way to guarantee that
independently chosen biases support teaching concepts at all.

In Cooperative Inference, rather than adopting an a priori ordering on the concepts,
cooperation is the bias; Cooperative Inference thus trivially satisfies the need for a bias.
This same process allows Cooperative Inference to address the other two results. It is not
a problem that there is no single optimal bias because both the learner and informant use
a notion of cooperation, rather than optimality, to select their biases. And so long as both
the learner and informant carry similar notions of cooperation—an assumption common to
all models of cooperation of which we are familiar—bias mismatch is not a problem.

Cooperative Inference thus straightforwardly accommodates the problems regarding
the selection of bias by integrating the bias into the model of cooperation. Perhaps more
interesting is how the resulting bias addresses the problem of computational complexity. The
most important level of Cooperative Inference here is the omission of irrelevant features.
When an informant includes only the relevant features in partial examples, the informant
limits the space of possible concepts to those that are formed from this set of features, which
puts a ceiling on the size of this space and thus on computational complexity.

Previous models assume that cooperation is secondary to learning. As a consequence,
they first address the basic quandary wherein learning requires a bias. This leads directly
into problems when learning from cooperative others, where learning hinges on coordination
between the informant and learner. Cooperative Inference offers a powerful way out of this
trap: by adopting cooperation as the bias, not only are these problems alleviated, but a
much more powerful notion of cooperation emerges.

Cooperative Inference for first-order logic

Models of cooperation for learning have focused on simple domains, often Boolean
concepts or even simpler cases. However, researchers have argued for the importance of
quantification and composition for a representational system of human learning (e.g. Mark-
man, 1998; Goodman et al., 2008; Kemp, 2012). Indeed, certain concept intensions that
depend on these components cannot be represented—and therefore cannot be learned—
within the framework of Boolean concepts we have used so far. For example, while “gray
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Figure 1 . A visual representation of the example in eq. (25) from a collection-level domain.

objects” can be represented as a Boolean concept, the concept “includes at least one gray
object”, represented by the first-order logic formula ∃oFgray(o), cannot.

In order to use first-order logic concepts, we introduce concepts defined over collections
of objects10. For instance, consider fig. 1. If this collection were labeled true then that
example would be consistent with concepts such as ‘includes at least one circle’, ∃oFcircle(o),
as well as ‘includes at least two circles’ and ‘includes at least one white object’. The problem
for Cooperative Inference is, given a particular intension, determining what can be omitted
from the corresponding extension and still result in the learner’s acquisition of the target
concept, assuming both the informant and learner are cooperative.

In this section, we describe how Cooperative Inference applies to quantification and
composition. We conclude the section with two applications of Cooperative Inference to
first-order logic concepts: Peano arithmetic and natural number.

Quantification. The first step toward expanding Cooperative Inference to cover
first-order logic is to incorporate quantification. In logic, quantification allows the represen-
tation of the everyday terms “some” (i.e. at least one) and “every”. One major difference
this necessitates is the consideration of examples as collection of objects rather than single
objects. We begin with a slight modification of the notion used for single-object examples.

Let F be the set of features where each feature f is paired with a set of possible
values, V , so that the set of features is F = {(f0, V0), (f1, V1), . . . }. These form objects
which are analogous to those in the above Boolean treatment. At a higher level, objects
can be assembled to form a collection; a set of collections then forms a concept. Table 1
illustrates the general form of collection-level concepts.

The following demonstration uses the domain of 6 objects and 2 features, one with
3 substitutive values and another with 2 substitutive values (the entire domain includes
(3 ·2)6 = 46, 656 distinct examples). An individual example from this domain is represented
in fig. 1 as well as the following equation,

{(fshape, vcircle), (fcolor, vgray)},
{(fshape, vsquare), (fcolor, vgray)},
{(fshape, vcircle), (fcolor, vgray)},
{(fshape, vsquare), (fcolor, vgray)},
{(fshape, vsquare), (fcolor, vgray)},
{(fshape, vtriangle), (fcolor, vwhite)}


. (25)

For Boolean concepts, we defined Cooperative Inference at two levels: the level of
features (the learner infers that features omitted from examples by an informant are irrel-
evant) and the level of concept labels (the learner infers that a sample that contains only

10 This definition is related to others including Kemp’s (2012) treatment of “high-level semantic systems”.
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Table 3
Quantification

inclusive exclusive
existential ∃oi∃oj(F (oi)F (oj)) ∃oi∃oj(F (oi)F (oj)), i 6= j
universal ∀oi∀oj(F (oi)F (oj)) ∀oi∀oj(F (oi)F (oj)), i 6= j

The four quantification terms are best illustrated through logical formulas. Inclu-
sive quantification may apply to the same object while exclusive quantification must
each apply to a different object. Existential quantification is satisfied by the ex-
istence of a single object. Universal quantification is only satisfied by all objects.

one concept label contains all examples with that concept label). Consider the effect of
these levels of Cooperative Inference for teaching the target concept ‘includes one or more
circle’, which includes the example in fig. 1 as well as thousands of others. By omitting
unnecessary features and negatively labelled examples, Cooperative Inference would allow
an informant to omit the irrelevant feature fcolor as well as either all positive or all negative
examples. This would still require the informant to use either 26 = 64 negative examples
or 36 − 26 = 665 positive ones, which is both an improvement in efficiency of orders of
magnitude and an extremely large number of examples for such a simple concept.

In addition to omitting unnecessary features, a cooperative informant can omit un-
necessary objects from collections. The cooperative learner will infer that the incomplete
collection stands in for all collections with matching examples—any collection with an ob-
ject that contains (fshape, vcircle)—will be inferred to be in the concept. Returning to the
concept ‘includes one or more circle’, ∃oFcircle(o).11 Using Cooperative Inference, it can be
taught with the single example,12

{{{(fshape, vcircle)}}} . (26)

Cooperative inference allows that objects be simplified by omitting irrelevant speci-
fications such as all features other than shape, so that the object in eq. (26) includes only
one specification, (fshape, vcircle). Cooperative Inference also allows the examples to be sim-
plified by omitting irrelevant objects, so that the example in eq. (26) includes only one
object {(fshape, vcircle)}. A learner receiving this teaching sample would then infer that the
concept includes all examples that match {{(fshape, vcircle)}}, i.e. all collections that include
one object that is a circle, (fshape, vcircle). A similar process would apply for any concept
with a single quantifier; thus all such concepts can be taught with exactly one example.

When multiple quantifiers are used, exclusive quantification requires that the objects
that match each quantifier be different (e.g. without exclusive quantification a single object
would satisfy the concept ‘includes two or more gray objects’) (for a related use of quantifi-
cation in interactive computation, see Japaridze, 2004). Under Cooperative Inference, after
objects are omitted, the remaining objects are matched exclusively as in exclusive quantifi-
cation. This allows Cooperative Inference to operate continuously with examples that do
not omit any objects; in such examples each object must be individually matched, as in

11 For convenience, let Fcircle(o) be a function that is true when (fshape, vcircle) ∈ o but false otherwise.
12 Note that the outer brackets that indicate a collection-level concept is the difference between eq. (26)

which teaches ‘includes one or more circles’ and {{(fshape, vcircle)}} which teaches ‘circles’.
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Figure 2 . An example from a collection-level domain.

exclusive quantification. The treatment of quantifiers here can be compared to the enriched
parallel individuation proposal of Le Corre and Carey (2007) where children apply numerals
to a set by comparing a set in the world with one held in long-term memory on the basis
of a one-to-one mapping.

To illustrate, using exclusive quantification, the following sample would match ex-
amples that contained two or more gray objects and is equivalent to the intension
∃oi∃ojFgray(oi)Fgray(oj), i 6= j {{

{(fcolor, vgray)},
{(fcolor, vgray)}

}}
. (27)

Note that exclusive quantification also applies to objects with different specifications. The
following sample teaches the concept ‘includes at least one triangle object and at least one
different white object’ which excludes the example in fig. 1 but includes the example in
fig. 2 {{

{(fshape, vtriangle)},
{(fcolor, vwhite)}

}}
. (28)

The equivalent intension for the the previous concept is ∃oi∃ojFtriangle(oi)Fwhite(oj), i 6= j.
Composition and predication. Composition involves using one or more con-

cepts to build another potentially different concept. We define composition at both the
collection- and object-level (see table 1). Composition allows concepts to make use of uni-
versal quantification—‘for all’—and inclusive quantification—where a single object may
satisfy multiple quantifiers.

A concept is simply a function that maps any example in a given domain to a set
of output labels, one example is the concept ‘is square?’ that maps objects to the Boolean
labels and another is ‘contains at least one square’ which is true for collections that contain
one or more objects that satisfy the feature ‘is square?’. Once a concept is taught, it can be
used in the future as a feature (e.g. an object-level concept like ‘circles’ would then become
an object-level feature whereas a collection-level concept like ‘includes at least one a circle’
would become a collection-level feature). When the cnew 7→ notation is used, it indicates
that the concept cnew may then be used as a feature.

Consider the concept ‘includes no circle objects’, corresponding to the formula
∀oFcircle(o).13 In order to teach the concept, an informant first teaches the inverse con-
cept ‘includes one or more circle objects’ with the sample

ccircle 7→ {{{(fshape, vcircle)}}} . (29)
13 The (·) notation indicates negation.
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In order to negate ccircle, the collection-level feature is paired with the false label (ccircle,F).
Such an example will match all collections which are not in the concept taught by ccircle.
Then, through composition, ‘includes no circle objects’ is taught with

{{(ccircle, F)}} . (30)

Consider, as another example, the concept ‘includes at least one triangle object and
at least one white object’ and note that this concept uses the inclusive quantification (i.e.
the concept includes collections with one white triangle). To teach this concept an informant
would first decompose the concept into two collection-level features that can be taught using
only exclusive quantifications. The following examples would teach ‘includes at least one
triangle’ and ‘includes at least one white object’ respectively,

cwhite 7→ {{{(fcolor, vwhite)}}} , (31)

ctriangle 7→ {{{(fshape, vtriangle)}}} . (32)

An informant may then compose cwhite and ctriangle to teach the target concept with the
following sample, corresponding to the intension ∃oi∃ojFwhite(oi)Ftriangle(oj),{{

(cwhite, T),
(ctriangle, T)

}}
. (33)

This concept uses inclusive quantification so it could be satisfied by a collection that included
a single white triangle and could also be satisfied by a collection that included a non-white
triangle and a separate white object.

The final piece required for a model that fully expresses first-order logic is predication.
A predicate is a term that takes as an input a previously defined concept and outputs a
potentially different concept. An example of a predicate is ‘contains at least one object of
a given shape’.

Here, predication is implemented by first teaching one or more concepts, each with
a unique concept label. Then, a predicate concept is taught that may take, as input, other
concepts. For instance, an informant might teach a concept for every shape

ccircle 7→ {{{(fshape, vcircle)}}} , (34)

csquare 7→ {{{(fshape, vsquare)}}} , (35)

ctriangle 7→ {{{(fshape, vtriangle)}}} . (36)

And then teach the predicate concept

Pshape(c) 7→ {{(c, T)}}, c ∈ {ccircle, csquare, ctriangle} . (37)

Cooperative Inference for richly structure concepts

We have noted two shortcomings of previous models of cooperation: the restriction
to less expressive representations such as Boolean logic, and to unrealistically simple con-
cepts. With Cooperative Inference, we have shown that it is possible to describe efficient
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learning for concepts that require first-order logic for representation but we have so far not
demonstrated complex concepts. In what follows we do just that.

The above framework describes a method for arbitrary first-order logic concepts. This
is because the model includes both a process for learning the operations corresponding to
the following symbols—P (·), ∃, ∀, ∨, ∧, and (·)—as well as composition, from a cooperative
informant. Together, these operations allow for the expression of any first-order logic con-
cept. Finally, table 2 includes the functions for transforming extensional cooperative samples
into intensional formulas and vice versa. This means that Cooperative Inference shows how
an informant might communicate arbitrary first-order logic concepts through examples and
how a learner might faithfully recover the intended intension from the examples.

We demonstrate with two cases. The first shows how a system of arithmetic could
be learned from a cooperative informant. This demonstrates that Cooperative Inference
can be used to teach concepts vastly more complex than those of previous models. The
second is less abstract in nature, describing how Cooperative Inference can be applied to
natural numbers. This is an example that has been well-studied in the cognitive development
literature, and thus illustrates our framework on a learning problem basic, important, and
that requires first-order concepts.

Peano arithmetic by examples. The Peano axioms (see Wang, 1957) are a set of
axioms for the formalization of arithmetic and the natural numbers. From these axioms, any
learner that uses standard rules of logical deduction would be able to derive all the necessary
facts about arithmetic (Mendelson, 2009). Here, we use the first-order formulation of the
Peano Axioms from Mendelson (2009):

• S1 x1 = x2 ⇒ (x1 = x3 ⇒ x2 = x3)

• S2 x1 = x2 ⇒ x1 + 1 = x2 + 1

• S3 0 6= x1 + 1

• S4 x1 + 1 = x2 + 1⇒ x1 = x2

• S5 x1 + 0 = x1

• S6 x1 + (x2 + 1) = (x1 + x2) + 1

• S7 x1 · 0 = 0

• S8 x1 · (x2 + 1) = x1 · x1 + x1

• S9 B(0)⇒ (∀x(B(x)⇒ B(x + 1))⇒ ∀xB(x))

Each concept can be taught using composition. First, each first-order logic for-
mula is transformed so that it uses a functional notation. For S1 this looks like
P⇒(P=(x1, x2), P⇒(P=(x1, x3), P=(x2, x3))). Each function can then be taught as an
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example-level feature:

S1.1 7→ {{(P=(x1, x2), T)}} (38)
S1.2 7→ {{(P=(x1, x3), T)}} (39)
S1.3 7→ {{(P=(x2, x3), T)}} (40)
S1.4 7→ {{(P⇒(S1.2, S1.3), T)}} (41)

S1 7→ {{(P⇒(S1.1, S1.4), T)}} . (42)

The axioms S1-8 can be taught in this two-step process (refer to the appendix A
for detailed derivations for each axiom). The final axiom S9 is actually an axiom schema,
representing a generalized form for an unbounded set of axioms. In order to teach the axiom
schema finitely, an informant would need to make use of an even higher order concept—a
concept over concepts—corresponding to a higher-order logic. We have given an example of
what this might look like at the end of appendix A.

Of course, this demonstration presupposes that learners can, from the basic axioms,
deduce the remaining rules of basic arithmetic. Thus, although in theory this could teach
a learner arithmetic, we know that human learners are unlikely to actually follow through
on this possibility. A less abstract exercise would to assume a more limited learner and a
practically relevant set of concepts. In the next section we describe such an approach for
the concept of natural numbers.

Natural number by example. There is a rich history of research for the learning
and development of numerical concepts (e.g. Gelman & Gallistel, 1978; Fuson, 1988;
Wynn, 1990; Carey, 2009). Recently Piantadosi, Tenenbaum, and Goodman (2012) have
applied a formal model of representational concept learning to the problem. Still, there is
no explanation for how this system of concepts for arithmetic or any similarly complex
system could be learned from a cooperative informant (regardless of how learning actually
procedes).

In what follows we will present a formal account that closely mirrors one account
from Carey (2009). Specifically, Carey argues that natural number is bootstrapped from the
primitive abilities to individuate small numbers of objects and the ability to differentiate
larger and smaller set sizes for large number of objects. We take the same starting point,
and using Cooperative Inference illustrate the learning of a system of concepts for natural
number.

Given a object-level feature, f , Ci(f) will be the number function that corresponds to
‘includes exactly i objects with f ’. We will use the natural numbers (non-negative integers)
and we assume that both the informant and learner know the sequence of natural numbers,
though the learner does not necessarily know the meaning (for empirical justification of this
assumption see e.g. Fuson, Pergament, Lyons, & Hall, 1985).

We begin with C1(f) which is taught by first teaching the ‘greater than or equal to’
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concepts C≥1(f) and C≥2(f) and composing those two concepts to form C1(f),

C≥1(f) 7→
{{
{(f,T)}

}}
(43)

C≥2(f) 7→
{{
{(f,T)},
{(f,T)}

}}
(44)

C1(f) 7→
{{

(C≥1(f),T),
(C≥2(f),F)

}}
. (45)

Then, we use C≥3(f) to teach C2(f),

C≥3(f) 7→



{(f,T)},
{(f,T)},
{(f,T)}


 (46)

C2(f) 7→
{{

(C≥2(f),T),
(C≥3(f),F)

}}
. (47)

This process can be extended to any natural number i with a concept schema as in
the previous section

Ci(f) 7→
{{

(C≥i(f), T),
(C≥i+1(f), F)

}}
. (48)

Intuitively, the last sample describes a set of concepts, rather than a single concept. This
concept schema can be used to individually teach concepts within the schema or the con-
cept notation can be extended to teach second-order concepts (e.g. concepts over concepts)
allowing this schema, corresponding to the remainder of the natural numbers, to be learned
at once (see S9 in appendix A).

Psychological grounding

The previous sections have explained the problems with previous models of coop-
eration and argued that Cooperative Inference is an effective solution to many of these
problems. Our demonstrations of Cooperative Inference have taken the form of a formal
mathematical description—something previous models are less amenable to—but our ex-
position has so far lacked grounding in psychological phenomena. We provide that here.

First, we review evidence for the more general phenomenon of cooperation in learning.
Nearly all of such research makes use of bias-first models of cooperation and experiments
explicitly designed to test such models. The result is that the experiments typically only
consider the selection or omission of whole examples. This means that these experiments
must include additional mechanisms to make bias-first teaching tractable at all, such as
ensuring that both the teacher and learner are aware of the restricted concept space14.
As such, the results of and predictions tested in these experiments can only be applied to
Cooperative Inference in an incomplete way. However, we do consider two studies which
provide some evidence in favor of the treatment of features in cooperative inference.

14It would be possible to add a mechanism to account for restricted concept spaces, but the point of
Cooperative Inference is that such an account alone is incomplete.
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Second, we review the evidence for the importance of feature selection and omission
to learning in general and cooperative learning in particular. The notion that learning about
features is an important part of concept learning is well-established and several mechanisms
have been proposed to accomplish this, from feature weights which are determined by the
statistical properties of observed examples to overhypotheses—essentially hypotheses about
which concepts are more and less likely. Less well-established is how information about
which features are important would factor into cooperation. We review proposals about
joint attention and gesture, both of which offer realistic mechanisms by which cooperative
informants might indicate the relevance of features and are consistent with the Cooperative
Inference model.

Existing evidence for models of learning from a cooperative informant

The Cooperative Inference model begins with the assumption that cooperative infor-
mants choose to select or omit parts of concepts in order to facilitate the learner’s acquisi-
tion of the concept. Additionally, the Cooperative Inference model assumes that, when the
learner knows that the observed examples are generated through cooperation, the learner
will make inferences that are both i) different from those that would be made in the absence
of cooperation and ii) facilitate the learning process.

The models and related behavioral demonstrations of strong sampling (Tenenbaum,
1999b) and pedagogical reasoning (Shafto & Goodman, 2008) firmly establish that coop-
eration can dramatically alter the process of learning and making inferences. They show
that when learners know that the source of information is helpful, learners make inferences
that are very different from those predicted by models that assume a disinterested source of
examples. Additionally, these models, together with supporting behavioral results, have es-
tablished that omitting examples based on the concept label as Cooperative Inference does
(e.g. including only positive or only negative examples) is a successful cooperative strategy
across several concept domains.

For instance, Tenenbaum (1999b) considered how people learn and generalize a set of
examples when all of the examples are positive. When people receive such examples, they
infer a concept that is coextensive with the examples but does not generalize beyond. In
the case Tenenbaum used, subjects were given points on a 2d plane and asked to learn an
axis-aligned rectangle. Participants inferred a rectangle that, as the number of examples
increased, approached smallest rectangle consistent with the received examples.

Consistent with the notion of strong sampling, Xu and Tenenbaum (2007b) reported
experiments where children were given examples from hierarchical categories (i.e. ones with
a ‘basic’ level such as ‘dogs’, a subordinate level such as ‘Dalmatians’, and a superordinate
level such as ‘animals’). They found that children tend to generalize to the narrowest level
that includes all the observed example, rather than showing a general bias such as a basic-
level bias.

Shafto and Goodman (2008) used a similar learning task to Tenenbaum (1999b)
except that the examples where chosen by participants who where asked to teach the con-
cept to other participants. When the examples where generated from a teacher as opposed
to sampled randomly, the learners behaved quite differently, generalizing to the minimal
consistent rectangle on the basis of just two examples. Additionally, teachers seemed to
take advantage of this by selecting examples that were diverse with respect to the target
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concept—in opposite corners of rectangles. Shafto and Goodman showed that the behavior
of both learner and teacher is predicted by a rational model where the teacher predicts the
learner’s response and selects the set of examples most likely to result in learning the target
concept.

Similarly, Rhodes, Brickman, and Gelman (2008) investigated children’s attention to
diversity of evidence when the evidence was selected by either the teacher or the learner. In
a first experiment, they showed that when 5-year-olds were presented with evidence selected
by a teacher, they generalized to the category the examples were diverse with respect to,
and not beyond. In a second experiment, they showed that when given a choice of two
possible samples to provide to a learner, 6-year-olds choose the more diverse sample.

Like previous models, Cooperative Inference predicts effects of the number of exam-
ples on the inferred complexity of the target concept. Studies have investigated how the
choice, by a knowledgeable and cooperative informant, to provide a single example affects
exploration (Bonawitz et al., 2011). Results suggest that, when the evidence is selected by
a cooperative informant, learners explore less, consistent with the idea that cooperative
selection of examples leads learners to infer simpler concepts.

Because Cooperative Inference focuses on feature omission and the associated im-
plications for hypothesis spaces, direct applications of the model would require working
though the additional assumptions most studies of cooperation include to permit whole-
example (bias-first) cooperation. As noted previously, previous models that have been ap-
plied are consistent with the principles Cooperative Inference (though incomplete without
some method of controlling relevant features). However in least two studies of cooperation,
the information given by the cooperative informant, is perhaps better understood as about
features rather than whole examples.

Buchsbaum et al. (2011) conducted an experiment that looked at the impact of peda-
gogy on children’s evaluation of causal information. First the researchers demonstrated that
children use statistical information about cause and effect to guide play. The children saw
an adult perform a series of steps (e.g. ‘squish, pull knob, rub’) followed by an activation of
the toy according to the condition. The three conditions varied the sequence that activated
the toy: a complete triplet was required, only the last pair was required, and only the last
action was required. Buchsbaum et al. found that without pedagogical instructions, across
all three conditions, children responded according to the statistics of the input, such as pro-
ducing more triplets (‘ABC’) in the ‘ABC’ condition than ‘**C’. In contrast, when adult’s
instructions were pedagogical, children ignored this statistical information and faithfully
reproduced the entire triplet.

In the previously discussed study by Bonawitz, Shafto, et al. (2011), an informant
either intentionally or accidentally omits all but one feature, where each feature corresponds
to a function of a toy. The researchers found that children explored the toy more in the
accidental condition than in the intentional condition. Both of these studies are consistent
with the idea that in the absence of cooperative information, children use different strategies
to infer which features are relevant from the observed examples and we discuss the different
forms this takes in the following section. Additionally, these studies indicate that information
about features takes on a special importance when features are chosen to be included or
excluded cooperatively. When features are intentionally omitted by an informant, children
are more likely to infer the irrelevance of such features, and when features are intentionally
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included by an informant, children are more likely to infer the relevance of such features.
As noted previously, Cooperative Inference departs from previous models in taking

computational complexity, and hence generalizability to realistic problem domains, seriously.
Indeed, previous models require non-trivial ad hoc assumptions in order to be applicable,
even in these simple experimental scenarios. For example, Shafto and Goodman (2008)
use a discretization to approximate the many possible concepts in their scenario. Similarly,
the designs in Bonawitz et al. (2011) and Buchsbaum et al. (2011) used a very limited
number of features rather than the potentially unbounded set that might realistically apply.
However, these studies do make several important points for the Cooperative Inference
model: cooperation has a dramatic effect on learning, omission of whole examples by concept
label is a successful cooperation strategy, and that feature selection and omission seems to
imply information about feature relevance.

Overhypotheses about, and attention to, features

The idea that there are constraints on the set of possible features has a history in
learning (Kemp, Perfors, & Tenenbaum, 2007; Kruschke, 1992; Love, Medin, & Gureckis,
2004) and in theories of how cooperation affects learning (Tomasello, Carpenter, Call, Behne,
Moll, et al., 2005). From a pure learning perspective, the formal problem is one of restrict-
ing the set of candidate features and resembles the notion of overhypotheses (Goodman,
1955; Kemp et al., 2007). Kemp et al. (2007) argues that hierarchical models, which ad-
mit hypotheses about hypotheses, provide a formal framework which captures the basic
constraining function of overhypotheses. However, hierarchical models, and indeed over-
hypotheses themselves, only provide traction to the extent that they constrain, and they
therefore hinge critically which constraints are posed. It is thus critical to provide an a
priori explanation for why some constraints are natural while others are not, or run the
risk of simply pushing the problem back one level.15

One way that hierarchical models may provide traction on the learning problem is
in being sensitive to the features that have meaningful variation within a concept. This is
the basis of the concept of attention, as discussed in the concept learning literature. For
instance, Nosofsky (1986) argued that people tend to allocate attention in such a way that
optimizes performance on the task at hand, whether identification (which requires dividing
attention among essentially all dimensions) or classification (which only requires dividing
attention only among dimension relevant to the classification). Billman and Knutson (1996)
argued for the importance of systematicity—predictive relationships between the values of
features—for learning the relevance of features. These principles have been captured directly
and indirectly in computational models of concept learning (Kruschke, 1992; Love et al.,
2004).

Although undeniably important, attention alone cannot explain the benefits of coop-
eration for learning. As shown in ‘Impossible for unknown bias’, the benefits of cooperation
derive from avoiding mismatches in the set of relevant features, and these need not be
constrained to all or only features that who satisfy specific statistical regularities.

15This was the problem that Goodman (1955) set out to address. As Kemp et al. (2007) note, hierarchical
models do not necessarily directly embody a solution to Goodman’s problem.
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Joint attention and gesture

One of the primary functions of joint attention is to facilitate learning in cases where
mere attention will not suffice. These may include situations where there are too many
potentially relevant features, statistical regularities are not strong, new features need to
be learned, or when the concept is especially important. Indeed, Tomasello and colleagues
(Tomasello, 2000; Tomasello et al., 2005; Tomasello, Kruger, & Ratner, 1993) have ar-
gued that triadic joint attention is especially important for explaining transmission of goal-
directed concepts like tool use. However, these accounts stop short of either providing a
mechanism by which triadic joint attention solves the learning problem or how it addresses
the complexity problems circumvented by our notion of feature relevance.

Gesture offers mechanism by which cooperative informants may indicate which fea-
tures are relevant (and by omission, which are not). Research shows that gestures very
commonly accompany learning opportunities (Baggett, 1984; Church, Ayman-Nolley, &
Mahootian, 2004; Mayer & Anderson, 1991), especially in educational situations (Alibali &
Nathan, 2007; Church et al., 2004; Flevares & Perry, 2001), and gestures facilitate learn-
ing and problem solving (Goldin-Meadow, Kim, & Singer, 1999; W.-M. Roth, 2001; Singer
& Goldin-Meadow, 2005). Research specifically highlights the role of gesture in indicat-
ing problem-relevant features. For example, Valenzeno, Alibali, and Klatzky (2003) showed
preschool children videos about symmetry where the lesson included examples with verbal
information or verbal plus gesture information. The gestures included pointing and tracing
gestures that highlighted the features that are relevant to the concept symmetry. Results
suggested that children in the verbal plus gesture condition were better able to identify
symmetric and asymmetric shapes at post test, consistent with the idea that gestures that
highlight problem relevant features lead to better learning. Other evidence suggests that
explicitly training children to themselves make gestures that highlight relevant features
(grouping strategies in solving math problems) learned more than children who produced
partially-correct or no gestures (Goldin-Meadow, Cook, & Mitchell, 2009). Moreover, in
this work, gestures are not merely reinforcing concepts expressed in language, but help
most when they differ from that which is being said (Goldin-Meadow et al., 2009; Singer &
Goldin-Meadow, 2005). This critically indicates that the benefit provided by gesture is un-
likely to be merely emphasis on parts of verbal expression but instead an altogether distinct
contribution. Indeed, theorists have gone so far as to argue that gesture grounds thought
in experience (Alibali & Nathan, 2012; Goldin-Meadow & Beilock, 2010), which is broadly
consistent with the possibility that gestures link concepts with examples. Regardless, this
literature provides strong support for the idea that gesture functions, in part, by indicating
relevant features and this facilitates learning.

Theorists such as Csibra and Gergely (2009) amd Tomasello (2000) emphasize the
role of cooperative information transmission in early cognitive development. The gesture
literature has mainly focused on experiments with older (school-aged) children. Therefore,
this evidence does not support for claims about early child development or about the foun-
dational role of reasoning about others in early cognitive development. Is there evidence
that such a mechanism is available and used to indicate feature relevance to infants? Infant-
directed speech (motherese, e.g. Cooper and Aslin, 1990; Kuhl et al., 1997) and action
(motionese, e.g. Brand, Baldwin, and Ashburn, 2002) provide candidate possibilities.
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Infant directed speech (“motherese”) is characterized by changes that have been hy-
pothesized to facilitate learning (Kuhl et al., 1997). While the precise details of this argu-
ment are hotly debated (Cristia, 2013; De Boer & Kuhl, 2003; Eaves, Feldman, Griffiths, &
Shafto, Under Revision; Kirchhoff & Schimmel, 2005; McMurray, Kovack-Lesh, Goodwin,
& McEchron, 2013), the idea that speakers may be increasing variability to draw attention
to aspects of the stimuli generally accepted16. Similarly, evidence suggest that “motionese”
may also show an increase in variability for problem relevant features (Brand et al., 2002).

These provide possible mechanisms by which informants may indicate the relevant
features of learning problems to very young children. Regardless of whether these possi-
bilities work out, critical role of feature relevance in Cooperative Inference generates the
prediction that, for reasoning about others to play the explanatory role posited in theories
of cognitive development, there must be a mechanism for indicating to very young children,
which features are relevant.

Summary

Cooperative inference captures the basic observation that there are many potential
features, only a subset of which are relevant at any time. It departs from more standard
notions of attention by not focusing on bottom-up statistical regularities. Instead, it offers a
formalization of how something akin to joint attention may facilitate concept learning—by
narrowing the set of candidate features to only those that are relevant for current purposes.
Given that feature omission plays a critical role in the efficiency of Cooperative Inference,
one may ask how psychologically this would be implemented. For cases where features are
present or absent, then omission may simply involve selecting an example where the value is
set to absent. More generally, there are a variety of ways to indicate that particular features
are relevant, e.g. through pointing, richer gestures, and motionese.

In addition to these connections to empirical psychological literatures, there are theo-
retical contributions that speak to the nature of concepts and representation. Our approach
allows new concepts to be created and used as primitives (i.e. “concepts as features”). This
provides a natural way to characterize construction of systems of concepts through com-
positionality (similar to Goodman et al., 2008; see aslo Schyns and Rodet, 1997). There
are also more speculative connections that hinge on origins of representational biases. As
proposed, Cooperative Inference could be interpreted as a principle for deriving situation
specific biases that is only engaged when learning from cooperative others. A more provoca-
tive possibility is that humans are optimized for learning from others, and the represen-
tational bias implied by Cooperative Inference—Disjunctive Normal Form—is applied in
all situations and the assumptions about omission of information are applied situationally.
Indeed, there is a developing consensus from studies on the complexity of learning that
learning complexity very much follows DNF. Feldman (2000) conducted what is likely the
concept learning experiment with the widest scope to date, systematically investigating the
difficulty of learning 41 distinct concepts. The simplicity hypothesis—the idea that when a
person learns a concept, that person tends to learn the simplest sentence under the avail-
able representation—provides a complexity of learning prediction for all representations and

16It is important to note that there are changes in concept-irrelevant features too, e.g. pitch, but that
these are argued to be cues to the pedagogical nature of the accompanying input (Csibra & Gergely, 2009).
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the prediction provided by DNF outperforms all others17. Furthermore, DNF has become
something of a consensus choice for a representation in models of concept learning (Good-
man et al., 2008; Goodwin & Johnson-Laird, 2011; Kemp, 2012). This proposal is highly
speculative, but demonstrates the broad potential implications of Cooperative Inference for
empirical and theoretical work in psychology.

Discussion

Through a set of related results we have shown that bias-first models are unlikely to
explain cooperation’s effects on learning because they depend on intractable computations
and the existence of a shared bias. First, bias-first models are computationally intractable
because they require that both the informant and learner consider every concept in the
concept space. Second, the assumption that informants know the learner’s bias requires a
priori agreement about prior biases in order to be successful, which creates a quandary:
in the absence of bias, learning can be no more efficient than randomly guessing among
consistent concepts; a principle of rationality cannot be used to determine the learner’s
bias, as there are many equivalently optimal biases; and, for large concept spaces, if the
informant and learner’s biases differ even slightly, it becomes impossible for bias-first models
to successfully teach any concept.

We then introduced a novel framework, which we call Cooperative Inference. It is
computationally efficient, functions in the absence of an a priori bias, and even leads to an
a priori choice of representation language for cooperative (and potentially non-cooperative)
settings. We show that cooperation provides a means by which information can be omitted,
yet lead to stronger learning.

The approach builds off previous models that used selective omission of labeled objects
(Shafto & Goodman, 2008; Shafto et al., 2014). By the common formalism, concepts are
structured with feature-value pairs at bottom; objects are sets of feature-value pairs; collec-
tions are sets of objects; and a concept maps a set of examples (either objects or collections)
onto the concept labels True and False. Previous models have only considered cooperation
as omission of labeled objects. In Cooperative Inference, choosing to omit features implies
to the learner that those features are irrelevant. This allows for a radical reduction in the
computational complexity of learning by limiting the set of concepts that are potentially
relevant. It then becomes possible to teach complex concepts, even when the concept domain
is not bounded. Further, because cooperative omission allows the instantiation of intensions
extensionally, the informant need not know the bias of the learner. Whereas the effects of
cooperative informants on learning had previously not been explored for first-order logic
concepts, we have shown that Cooperative Inference applies to this domain and leads to
predictions on two interesting cases: Peano arithmetic and natural number. These demon-
strations illustrate that the framework can be applied in domains that begin to approximate
the richness of human conceptual knowledge.

17 See the analysis using ‘mental models’ by Goodwin and Johnson-Laird (2011) and the commentary by
Feldman (2012).
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Limitations

These demonstrations are subject to important limitations, pointing to opportunities
for future work. In order to efficiently teach a system of concepts, we assumed that the
learner made use of a valid system of deduction. It is implausible that people learn much
purely through deduction. Our demonstration should therefore be viewed as a demonstra-
tion of teachability rather than a prediction about human behavior, and future work should
provide a more detailed treatment that makes closer contact with relevant empirical liter-
ature. Second, while first-order logic provides a substantial increase in expressiveness over
the more common propositional logic, we still had to make use of a yet higher order logic
in order to teach arithmetic through the Peano Axioms. Specifically, future work should
look to applying Cooperative Inference to even more expressive representations, such as
relational concepts and partial-recursive functions. Third, we have also focused on learning
domains where the informant has no information about the learner’s beliefs. Thus, our re-
sult functions as a default bias for such learning domains. In the future, models will need to
account for domains in which learners are not completely naive, and informants are privy
to this. Accomplishing this will lead us to also relax our deterministic account to deal with
uncertainty (e.g. about prior knowledge), which would allow us to account for variability in
human behavior.

Existing models of learning from cooperative, knowledgeable informants in cognitive
science have mainly adopted a probabilistic approach. Though we have not focused on
this setting, our results cover these models, and our proposed solution is closely related
to intuitions underlying previous models. In our analysis, we adopt deterministic inference
over ordered sets of concepts. Probabilistic models assume a prior bias, which is precisely
an assumption about the a priori ordering of concepts. Moreover, the mechanics of be-
lief updating in probabilistic frameworks obey the basic assumptions of our deterministic
approach—consistency and class preservation. Thus, the limitations identified for bias-first
models apply to probabilistic models broadly.

Although our framework approach is more removed from the details of human behav-
ior than is typical of psychological modeling, we believe the results bear out the benefits of
this approach. Recent research has critiqued more abstract computational-level and ratio-
nal models as offering little in the way of predictive power (Bowers & Davis, 2012; Jones
& Love, 2011; Marcus & Davis, 2013). Here, by abstracting away from some of the details
necessary to ensure a psychologically plausible account, the results are stronger and more
general. We define a class of models—bias-first models, which encompasses many, if not all
of the models in the learning literature—and show that they cannot provide an adequate
account of cooperative learning from knowledgeable informants without a priori agreement
between the informant and the learner. Moreover, we show that even relatively minor vari-
ance between the informant’s assumed and the learner’s true bias leads to failure given a
sufficiently large set of candidate concepts. This failure is an inevitability without strong
constraints on the set of potentially relevant features. We show that cooperation provides a
mechanism to allow strong inference based on omission of features, which in turn reduces the
concept space, and allows a form of situation-specific learning bias. By putting cooperation
first, we show that the problems associated with bias-first models can be avoided.
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Connecting existing psychological theories

Cooperation plays an important role in influential theories of human nature.
Tomasello (1999) argues that the ability to cooperatively learn explains our ability to ac-
cumulate information over generations in ways that other animals do not—the cultural
ratchet effect. Boyd et al. (2011) proposed that humans occupy a cultural niche and that
human success is owed to the unique ability to learn from others. These claims seem to
necessitate a model of efficient learning through cooperation. Previous models of coopera-
tive learning have suggested that learning can be qualitatively changed by the availability
of knowledgeable and cooperative informants, and provided initial support for the broader
idea of humans inhabiting a cultural niche designed for cooperative learning. However, these
accounts relied on implausibly strong assumptions—such as informants with perfect knowl-
edge of learners’ biases and unlimited computational resources—rendering them ineffective
for even unreasonably simple concepts.

Psychological theorists have offered detailed proposals for how cooperative learning
can lead to accumulated changes in human nature. Csibra and Gergely’s theory of natural
pedagogy (Csibra & Gergely, 2006, 2009) proposes two mechanisms by which cooperation
facilitates learning: relevance and generalizability. Relevance represents the assumption that
the information that has been communicated by the informant is pertinent and communi-
cated efficiently (Sperber & Wilson, 1986). Generalizability represents an assumption that
information selected to be conveyed applies broadly. Relatedly, Tomasello et al. (2005) has
proposed a more basic notion of cooperation based on triadic joint attention. On this ac-
count, the key ability facilitating cooperative learning is the ability for an informant and
learner to jointly direct attention to the objects or parts of objects most useful for the
purpose of learning.

Cooperative Inference is closely related to these psychological theories. Cooperative
Inference provides logical basis for relevance (limited to the context of our learning prob-
lems): the mutual goal of isolating a concept implies that omitted information can be as-
sumed to be irrelevant. The notion of feature omission used here can be viewed as the
complement of triadic joint attention proposed by Tomasello. The generalizability used by
Csibra and Gergely requires abstracting away from the details of the current situation.
In typical accounts of learning, generalizing from a single example is nigh impossible due
to the fact that any object can be a member of many categories. Cooperative inference,
by allowing inferences about omission of features, results in a straightforward account of
generalizability based on internalizing the relevant aspects of the situation.

From cooperative inference to cultural evolution

Indeed, computational modelers have investigated the conditions under which we may
expect cultural transmission to result in accumulation of knowledge (Beppu & Griffiths,
2009; Griffiths & Kalish, 2007). In general, mere transmission of examples from one person
to another, as in a game of telephone, is not enough (Griffiths & Kalish, 2007). Results show
that when examples are used to transmit a concept through a chain of learners, the result
is total loss of information. This occurs because every individual who draws an inference
distorts the information slightly with their own bias, and therefore does not pass on the
observations completely veridically. The end result converges to people’s a priori biases.
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This is only marginally improved when each person can directly observe their own evidence
(Beppu & Griffiths, 2009). A sufficient condition for cultural ratchet effect is posterior
passing, the ability to perfectly convey one person’s beliefs to the next, together with each
person observing their own information (Beppu & Griffiths, 2009).

Cooperative inference satisfies the conditions for achieving the cultural ratchet. The
equations in table 2 describe a logical relation between the instantiation of concepts in
examples and inference from examples to concepts. Whereas Beppu and Griffiths (2009)
proposed natural language as a mechanism to allow posterior passing, our results suggest
that Cooperative Inference—which allows for the communication of an intension directly
through extensional examples—is sufficient to achieve cultural accumulation of knowledge.
This provides support for existing psychological accounts, which focus on prelinguistic abil-
ities as mechanisms for cultural accumulation (Csibra & Gergely, 2009; Tomasello, 1999;
Tomasello et al., 2005).

An a priori analysis of representation

In addition to providing support for theories of cultural accumulation, Cooperative
Inference points to a natural basis for representing concepts. Standard approaches to learn-
ing must select a bias, but it is quite difficult to find an objective basis on which to do
so. Variously, models have adopted neuron-like representations (McClelland & Rumelhart,
1988; Rogers & McClelland, 2005), logical representations of various forms (Feldman, 2000;
Goodman et al., 2008; Kemp, 2012), as well as more narrowly-scoped proposals such as
prototypes (Rosch, 1973; Rosch & Mervis, 1975) and exemplars (Kruschke, 1992; Nosofsky
& Palmeri, 1997). Each of these (combined with many more detailed assumptions) implies
a bias. For most models, due to fundamental ambiguities in our knowledge of the structure
of neurons and the objective features of the external world, the choice can only be loosely
justified. One of the strongest approaches is rational analysis, which suggests that one be-
gin by analyzing the problem in the world, and assume that internal representations are
adapted to solving the problem. This method has been used to justify choice of biases across
many domains (Anderson, 1990; Chater & Oaksford, 1999; Tenenbaum, Griffiths, & Kemp,
2006) However, even this method is highly controversial (Bowers & Davis, 2012; Jones &
Love, 2011; Marcus & Davis, 2013).

Our approach is both similar and different. What we have done can be viewed as a
form of computational-level analysis where the focus is on the social environment rather
than the external environment (see also Christiansen & Chater, 2008). Rather than adapting
to some assumed properties of the external environment, we have analyzed the possibility
that we are adapted to cooperate with others. This approach avoids some of the problems
of previous approaches. Unlike rational analysis based on the external environment, our
basic formalization of cooperative learning—as the a mutual goal of inferring a concept—is
common across many formalisms (Benz, Jäger, & van Rooij, 2005; Shafto & Goodman, 2008;
Zilles et al., 2008), and thus we take it to be relatively uncontroversial. Moreover, unlike
some other aspects of our physical or linguistic environment, the presence of cooperative
others available to support learning is a nearly universal feature of human societies that has
been stable for a very long time (Boyd et al., 2011).

Perhaps the most intriguing consequence of our framework is that it leads to a partic-
ular choice of representation language. Our results indicate that Disjunctive Normal Form
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(DNF) is a natural choice for a representation in which to represent Boolean and first-order
concepts where cooperation is important. Interestingly, empirical and computational inves-
tigations into Boolean concept learning converge on a learning bias that is closely predicted
by representational complexity of concepts represented in DNF form (Goodman et al., 2008;
Goodwin & Johnson-Laird, 2011; Kemp, 2012). This is consistent with the possibility that
people’s default learning biases are adapted to the efficient transmission of information be-
tween cooperative others. If true, this would provide strong evidence that we indeed inhabit
a cultural niche (Boyd et al., 2011).

Conclusions

The idea that learning from cooperative informants is central to human learning and
human culture appears across theories of cognition, cognitive development, and cultural
anthropology. Previous formal accounts have fallen short of a complete explanation of how
this may be. We have presented a critique of existing models and provide a framework
on which a positive account of learning through cooperation may be built. Our approach
generalizes the idea of cooperative omission of information, resulting in a precise account of
how cooperative information transmission may lead to rapid learning in richly structured,
even unbounded, conceptual domains. Our framework instantiates many of the assumptions
of previous psychological theories in a precise mathematical framework, and satisfies condi-
tions for cultural transmission. Provocatively, it also suggests the possibility that people’s
learning biases are adapted for learning from others. To our knowledge, this is the first
formal account of how cooperation may lead to cultural accumulation of knowledge and
cultural niche based on social learning. Considerable work remains but we take this to be
a positive first step to providing a computationally precise link between the cooperation,
culture, and the accumulation of richly structured knowledge.
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Appendix
Peano Axioms continued

Earlier, we demonstrated how the first of the Peano axioms would be taught using the
first-order logic version of Cooperative Inference. Here, we include the remainder of the
axioms.

S2 x1 = x2 ⇒ x1 + 1 = x2 + 1
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S2.1 7→ {{(P=(x1, x2), T)}}
S2.2 7→ {{(P+(x1, 1), T)}}
S2.3 7→ {{(P+(x2, 1), T)}}
S2.4 7→ {{(P=(S1.2, S1.3), T)}}

S2 7→ {{(P⇒(S2.1, S2.4), T)}}

S3 0 6= x1 + 1

S3.1 7→ {{(P+(x1, 1), T)}}
S3 7→ {{(P=(S3.1, 0), F)}}

S4 x1 + 1 = x2 + 1⇒ x1 = x2

S4.1 7→ {{(P+(x1, 1), T)}}
S4.2 7→ {{(P+(x2, 1), T)}}
S4.3 7→ {{(P=(S1.2, S1.3), T)}}
S4.4 7→ {{(P=(x1, x2), T)}}

S4 7→ {{(P⇒(S4.3, S4.4), T)}}

S5 x1 + 0 = x1

S5.1 7→ {{(P+(x1, 0), T)}}
S5 7→ {{(P=(S5.1, x1), T)}}

S6 x1 + (x2 + 1) = (x1 + x2) + 1

S6.1 7→ {{(P+(x2, 1), T)}}
S6.2 7→ {{(P+(x1, S6.1), T)}}
S6.3 7→ {{(P+(x1, x2), T)}}
S6.4 7→ {{(P+(S6.3, 1), T)}}

S6 7→ {{(P⇒(S6.2, S6.4), T)}}

S7 x1 · 0 = 0

S7.1 7→ {{(P·(x1, 0), T)}}
S7 7→ {{(P=(S7.1, 0), T)}}
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S8 x1 · (x2 + 1) = x1 · x1 + x1

S8.1 7→ {{(P+(x2, 1), T)}}
S8.2 7→ {{(P·(x1, S8.1), T)}}
S8.3 7→ {{(P·(x1, x2), T)}}
S8.4 7→ {{(P+(S8.3, x1), T)}}

S8 7→ {{(P⇒(S8.2, S8.4), T)}}

S9 B(0)⇒ (∀x(B(x)⇒ B(x + 1))⇒ ∀xB(x))

S9.1 7→ {{(PB(0), T)}}
S9.2 7→ {{(PB(x1), T)}}
S9.3 7→ {{(P+(x1, 1), T)}}
S9.4 7→ {{(PB(S9.3), T)}}
S9.5 7→ {{(P⇒(S9.2, S9.4), T)}}
S9.6 7→ {{(PB(x2), T)}}
S9.7 7→ {{(P⇒(S9.5, S9.6), T)}}

S9 7→ {{(P⇒(S9.1, S9.7), T)}}
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