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Abstract

Emotional state influences nearly every aspect of human cog-
nition. However, coding emotional state is a costly process
that relies on proprietary software or the subjective judgments
of trained raters, highlighting the need for a reliable, automatic
method of recognizing and labeling emotional expression. We
demonstrate that machine learning methods can approach near-
human levels for categorization of facial expression in natural-
istic experiments. Our results show relative success of models
on highly controlled stimuli and relative failure on less con-
trolled images, emphasizing the need for real-world data for
application to real-world experiments. We then test the poten-
tial of combining multiple freely available datasets to broadly
categorize faces that vary across age, race, gender and photo-
graphic quality.
Keywords: Classification, machine learning, computer vision,
support vector machines, emotion and cognition, facial recog-
nition

Introduction
Emotions are widely assumed to play a causal role in nearly
every aspect of cognition (e.g., Pessoa, 2008), and yet many
studies in cognitive science (and developmental science in
particular) neglect to measure emotion because current mea-
sures are either expensive, tedious, or inaccurate. Conse-
quently, many standard practices in the field have turned to
indirect measures of affect. One prevalent example is the as-
sociation of infant looking time with vastly different emotions
depending on the researchers’ theoretical stance, including
preference (e.g., to positive emotional expressions; LaBar-
bera, Izard, Vietze, and Parisi, 1976), interest (e.g., to ani-
mate stimuli; Csibra, 2008), or surprise (e.g., to violations of
belief; Baillargeon, Scott, and He, 2010). Another example
is the notable lack of emotional state measures in studies on
attention, learning and memory, even though the field has ac-
knowledged the impact of emotion on these functions for over
50 years (Easterbrook, 1959). Rather than inferring the role
of emotions, future studies could measure it efficiently using
facial recognition algorithms. The advent of elegant machine-
learning algorithms offers a free, reliable, non-invasive and
easily implemented method that may be able to measure af-
fective state in real-world settings at levels that meet or ex-
ceed trained human raters.

Here, we demonstrate automatic classification of emo-
tional faces using three different datasets. We concentrate on
young populations, as developmental science is particularly
interested and constrained by hand-coding, but also demon-
strate that methods are easily extended to adult populations.
We also concentrate on relatively simple machine learning
algorithms that may be flexibly implemented for a variety of

psychological studies. In doing so, we highlight the need for
real-world data to solve real-world problems, as models based
on well-curated training images that are common in the field
often fail to accurately categorize messy, uncontrolled im-
ages. We further show how a single, large dataset that lever-
ages controlled and uncontrolled images can improve gener-
alization to real-world stimuli.

Recognition of facial expressions is a useful, non-invasive
method of reasoning about another’s thoughts. The seem-
ing universality of emotional expressions further underscores
their importance (Ekman & Friesen, 1971). However, to un-
derstand how emotion influences cognition, researchers must
be able to categorize facial expressions in continuous time –
and no existing measure can do this without great expense of
time or money. Participant surveys lack temporal resolution
and fall prey to metacognitive errors. Physiological methods
require expensive or invasive apparatus such as galvanic skin
response monitors or cortisol measurements Picard, Vyzas,
and Healey, 2001. Even the gold-standard method of the Fa-
cial Action Coding System (FACS; Ekman and Rosenberg,
1997) requires hours of effort by trained technicians or pro-
hibitively expensive proprietary software. As the demand for
ecological experimentation increases, so too does the volume
of video data for researchers (or more often their students)
to scrutinize and label, frame by frame. The relatively con-
strained problems of identifying, labeling and categorizing
facial features over thousands of datapoints is a prime oppor-
tunity for a machine learning solution.

Advances in data science and machine learning offer an
affordable and accurate measure of participant emotional
state using only filmed recordings. Computer scientists have
demonstrated the uncanny accuracy of basic algorithms to
classify highly controlled emotional images (e.g., Cohn, Zlo-
chower, Lien, and Kanade, 1999; Littlewort, Bartlett, Fasel,
Susskind, and Movellan, 2006), and recent efforts to catego-
rize emotion “in the wild” (Yao, Shao, Ma, & Chen, 2015)
have the problem to unsupervised learning for less controlled
images. Here we are interested in applying machine-learning
to the varied contexts typical of cognitive science experi-
ments. Laboratory settings offer more control than streaming
surveillance footage, but less control than posed photography.
We approximate this by comparing human performance to
an algorithm trained on three datasets with unique attributes,
each of which could reasonably be applied to experimen-
tal settings. We demonstrate the need for large amounts of
highly varied data to consistently and accurately categorize
human facial expressions. Furthermore, we present a model



trained on images that vary by age, ethnicity, gender and pho-
tographic conditions that nonetheless approaches human rater
performance. It is worth noting that our goal is not to model
human performance or develop new machine-learning meth-
ods; rather, we wish to explore the kinds of data required to
approximate human-level emotion coding for cognitive ex-
periments.

We begin by introducing several datasets with unique at-
tributes of in interest to different applications. We define
the methods required to use open-source libraries to create
a simple machine-learning classifier. Applying this model
to the datasets reveals that highly controlled training stimuli
are more easily categorized, and that noisier, real-world stim-
uli are unsurprisingly more difficult. We discuss the trade-
off between accuracy and generality by amalgamating three
datasets into a comprehensive model that is more robust to
noisy input.

General Methods
Databases
Machine learning requires a large number of samples for re-
liable classification. However, the type of input can greatly
affect the generalizability of the model. For instance, a model
trained on only children’s faces might not perform well with
adult faces. Likewise, a model trained on highly controlled
images might not perform well on naturalistic stimuli. We
drew from three sources for training, each with a particular
strength that could improve performance in a given setting.
A “face” was defined as a front-facing image containing two
eyes and no obstructions to facial features.

The CAFE dataset. Most face databases for psychology
and machine learning focus on adults. However, a recent ef-
fort by LoBue and Thrasher (2015) documented the facial ex-
pressions of young children for applications in developmental
psychology. Although stimulus sets exist for older children
(aged 8-17, Egger et al., 2011) and adults (Cohn et al., 1999),
the Child Affective Facial Expression (CAFE) set is the only
collection featuring young children. The set contains pho-
tographs of 154 racially and ethnically diverse 2- to 8-year-
old children posing for six emotional facial expressions (an-
gry, disgusted, fearful, happy, sad, and surprised) as well as a
resting neutral expression. Facial expressions were further la-
beled for “open” or “closed” mouths for angry, fearful, happy,
sad and neutral faces. Disgust expressions were uniquely
coded as with or without a protruding tongue. The CAFE
set features multiple emotional faces for each child, though
not every child demonstrated every subcategory of emotion.
Altogether, the set contains 1192 images. Children’s facial
features offer a great deal of variability, and the ethnic diver-
sity of the participant sample approximates the demographics
of the United States.

The CAFE set was validated by a group of 100 independent
adult raters, who viewed each image and labeled it with one
of the seven emotions. Importantly, the images are labeled
by the expression the child was asked to give, and not by

the labels most often generated by the raters. This variability
makes the CAFE useful to compare to computer models, as
we can test the model’s success on “difficult” or “easy” faces
compared to human performance.

The CK+ dataset. One method of producing cleaner data
for machine learning is to extract images with tightly con-
trolled visual features. Although our focus is on develop-
mental populations, the CAFE set is the only publicly avail-
able database of children’s faces. We therefore included a
dataset comprised only of extensively vetted faces: the Cohn-
Kanade AU-Coded Expression Database, Version 2 (Lucey
et al., 2010). The Cohn-Kande dataset (CK+) consists of
over 11,000 image sequences of 120 adult models as they
changed from neutral resting faces to peak emotional ex-
pression from 7 categories (the same as the CAFE expres-
sions, with the addition of contempt). It is currently unknown
whether training images from an adult dataset would improve
performance on child facial categorization. Given the abun-
dance of adult datasets, any improvement on child facial clas-
sification would expand the available training data for future
models.

Machine vision researchers often use the CK+ dataset as
a benchmark for performance of an algorithm (e.g., Little-
wort et al., 2006). For our purposes, training the algorithm
on the CK+ dataset allows us to test the best case scenario
of facial classification, as it contains only highly controlled
images with little cross-category variability. This comes at
a cost to ecological validity, as all faces are of adults aged
18 to 30, and less than 18% were minorities. Additionally,
whereas items in the CAFE set were validated using subjec-
tive judgments from adult raters, the peak faces from the CK+
database were validated using the Facial Action Coding Sys-
tem (FACS). Briefly, FACS categorizes faces into emotional
categories using reliable expressions of specific facial motor
groups, or action units (Ekman & Rosenberg, 1997). Lucey
et al. (2010) validated the emotional labels given to each peak
face using a linear support vector classifier trained on action
units. Selecting these initial and peak faces generated 308
emotional expressions from the 6 emotional categories with a
corresponding neutral face for each. A single neutral face was
randomly selected for each participant to prevent over-fitting
of neutral faces, leaving 120 neutral faces and a total of 428
faces.

Google image search by category. The CAFE and CK+
sets feature images taken under ideal lighting and camera
positions, with labels that have been rigorously validated.
However, real-world use of a facial expression classifier
would necessarily include less-than-ideal photographic cir-
cumstances. To approximate the noisiness of real-world stim-
uli, we extracted images from a Google image search with the
search term “X child face”, where X was an emotional cate-
gory of interest. Images were selected by research assistants,
with the criteria that each image featured an individual human
child’s face (approximately aged 3-10) without obstruction on
the face area.



Research assistants terminated the collection of images if
the total number of collected images exceeded 100 exemplars
or if the search returned more than 20 images in a row without
a viable exemplar. This produced only 2 neutral exemplars,
so an additional search was conducted using “calm” and “se-
rious” as additional terms for neutral. This produced a total
of 609 faces from all seven categories

Face Extraction

Images from all datasets contained extraneous information,
including body parts (e.g., hair and shoulders) or photo-
graphic artifacts (e.g., serial numbers in the CAFE and CK+
datasets, miscellaneous objects in the Google dataset). All
images were passed through a facial recognition algorithm 1

and reduced to a 300 x 300 pixel rectangle centered on the
identified face.

Facial recognition was conducted using Haar Feature-
based Cascade Classifiers. Generally, the cascade classifier
breaks an image into clusters of pixels and excludes clusters
that do not resemble facial features from later analysis. The
process is then repeated until only clusters that resemble fa-
cial features remain. For methodological details and valida-
tion, see Viola and Jones (2001). The end result is a compu-
tationally efficient method for identifying facial regions.

A trained cascade classifier was obtained from the
OpenCV website (Itseez, 2016). All faces from all datasets
were passed through the classifier and cropped. A member
of the research team then examined each extracted face and
discarded false positives on non-face objects. This method
produced 1187 faces (5 removed) from the CAFE set, 427
faces (1 removed) from the CK+ dataset, and 477 faces (132
removed) from the Google dataset.

Human Validation

Image category labels for the CAFE and CK+ datasets were
validated using adult human raters. To ensure that all im-
ages were of equal quality when training the classifier, we
validated the Google dataset using 87 adult human raters re-
cruited via Amazon Mechanical Turk. This was necessary
to compare classifier and human performance for images that
more closely resemble the real world.

Raters (median age: 31; 61 females, 41 college graduates,
28 parents) labeled a representative subset of the Google faces
(between 47 and 49 images, evenly distributed across cate-
gories) into one of seven emotional categories. Raters also
labeled a subset of the CAFE dataset (42 images, 6 from each
category). The CAFE faces were evenly distributed by diffi-
culty according to the CAFE set’s previous validation metrics.
This was done to compare the performance of in-person (live)
and online raters.

1The facial recognition algorithm was adapted from the Open
Source Computer Vision Library (OpenCV v2.4.13; Bradski, 2000)
and programmed in Python 2.7. OpenCV is an open source library
that provides a common infrastructure to machine vision applica-
tions in academia and industry.

Figure 1: Validation of the CAFE and Google datasets by “online”
human raters via Mechanical Turk vs in-person, “live” raters.

We first confirmed that Mechanical Turk raters performed
comparably to live human raters (Figure 1). Overall accu-
racy of ratings for CAFE set images between live and online
raters was significantly positively correlated (r = .783, t412 =
25.53, p < .0001). Furthermore, accuracy of online and live
raters were further correlated for all emotional categories
(lowest rsurprise = .410, t55 = 3.340, p = .001; highest rsad =
.820, t57 = 10.807, p < .0001), with the exception of happy
expressions (r = .22, t57 = 1.742, p = .08), which likely had
a reduced correlation due to ceiling effects. These results sup-
port the use of Mechanical Turk raters to validate the Google
dataset.

We then confirmed that the human categorization perfor-
mance for the novel Google images were comparable to the
CAFE images. A two-way ANOVA modeling mean online
rater categorization performance by dataset and emotional la-
bel found significant differences in categorization accuracy
by dataset (F1,877 = 8.753, p = .003,η2 = .086) and emotion
(F6,877 = 89.504, p < .0001,η2 = .881). There was also a
significant interaction (F6,877 = 2.366, p = .028,η2 = .023),
indicating no significant difference between online and live
raters for angry, happy, neutral, sad and surprised expres-
sions (highest t877 [sad] = .9694, p = .167), and significantly
poorer performance by online raters for disgusted and fear-
ful expressions (lowest t877 [disgust] = 2.134, p < .017,d =
.144). These results suggest that the Google dataset is compa-
rable to the CAFE set for five of seven emotions and follows
the same trends for sadness and disgust, making the Google
set ideal for testing an algorithm on ecological images.

The Machine Learning Algorithm

Whole research communities are dedicated to the application
of machine learning to emotional recognition, using both su-
pervised and unsupervised algorithms for still image, video,
audio or multimedia data (e.g., the EmotiW challenge at the
annual ACM ICMI conference). Although there have been re-



cent successes modeling dynamic features (Littlewort et al.,
2006), We opted to analyze still images to simplify imple-
mentation for the target demographic of psychologists, and
used a supervised learning approach due to the relatively few
training images available. We therefore selected a Support
Vector Machine (SVM) algorithm, as SVMs are ideal for use
by non-computer scientists for their simple implementation
and ease of interpretation. SVMs have a long and success-
ful history in image recognition (Tong & Chang, 2001), par-
ticularly with facial recognition (Osuna, Freund, & Girosit,
1997). An SVM is a type of supervised learning in which
the algorithm identifies the optimal boundary between labeled
data points. The boundary is defined by the support vec-
tors, the subset of the data that define the boundary between
classes. This boundary can then be used to infer, based on ob-
served features, which category a novel image (or novel im-
ages) best fit. We recommend Cristianini and Shawe-Taylor
(2000) for an in-depth overview.

We trained an SVM for each dataset, as well as on a com-
prehensive dataset containing training images from all three
datasets. We used an open-source SVM classifier available
through the scikit-learn database (Pedregosa et al., 2011).
SVMs require the user to choose a similarity function, called
a kernel, that governs the complexity of the possible bound-
aries between classes. There are many standard options for
kernels including linear, polynomial, and radial basis func-
tion (RBF; aka Gaussian). Each computes similarity some-
what differently and they consequently differ in the kinds of
classification boundaries they admit; as one might expect, a
linear kernel gives a linear boundary and polynomial and RBF
kernels allow non-linear boundaries. While these non-linear
methods offer increased expressiveness, they also increase the
risk of overfitting.

Additionally, there are two parameters that must be set and
affect outcomes: the regularization parameter C and kernel
coefficient γ. C is a regularization parameter which, when
set to higher values, allows more complex solutions. The
kernel coefficients γ affect the influence of specific specific
supports. When γ is small, a support has broad influence
on classification decisions, whereas when γ is large the in-
fluence of each support is localized to the area near the
supporting data point. A grid search for kernels, {linear,
polynomial, radial basis function (RBF)}, penalty param-
eters, C = (.001, .01, .1,1,10,100), and kernel coefficients,
γ = (.0001, .001, .01, .1,1,10,100,1000), yielded the optimal
combination of a polynomial kernel with a C = 1 and a
γ = .0001, as assessed via cross-validation.

Although SVM classifiers are often used for facial recogni-
tion, training a classifier for emotional features offers unique
problems. The classifier might divide faces by other similar-
ities; emotional expressions are but a subset of the consider-
able variability between faces. For example, say a classifier
is trained on two stimuli: Child A with an angry expression
and Child B with a happy expression. When presented with a
test image of Child A making a happy expression, the SVM

Figure 2: Classification of test images improved as a function of
training data. The top line denotes average human accuracy across
live and online human validation; the lower line denotes chance.

may be more likely to categorize the test image by the stable
facial similarities of Child A than to the desired similarities
in emotional expression of Child B. One solution might be
to randomly select only one face per child participant in the
CAFE and CK+ sets. This is not ideal, as it would greatly
reduce the training set. Instead, we trained the SVM on all
faces for a proportion of participants and tested on all faces
for the withheld subset of participants. This eliminated the
possibility that a test image might be paired with a training
image of the same child, while also maximizing the richness
of the dataset.

Another issue unique to emotional classification is the
breadth of expression. For instance, the CAFE set makes a
distinction between faces with open and closed mouths, and
both the CAFE and Google sets contain exemplars that were
difficult to label by human raters. We opted to include all in-
stances under the basic emotional category, regardless of sub-
ordinate labels or validation score, so as to maximize training
data with the greatest possible variation between features.

Results
The algorithm was trained on incrementally increasing sizes
of training data from all three datasets individually and a com-
prehensive dataset trained from all sources. Each sample size
by dataset was repeated 40 times with a new random selection
of training and test data to approximate error.

The primary goal of these analyses was to demonstrate
machine-learning categorization on different training data
versus human raters. Figure 2 illustrates overall perfor-
mance by sample size for each of the datasets. An ANCOVA
modeling dataset by training sample size revealed a signif-
icant effect of dataset (F3,1512 = 1412.39, p < .0001,η2 =
.540) and training sample size (F1,1512 = 1103.76, p <
.0001,η2 = .422), with a significant interaction (F3,1512 =
96.91, p = .0001,η2 = .037). Paired comparisons revealed
that performance on within-dataset models increased faster
than the comprehensive dataset as a function of training
size (CAFE: t1512 = 12.246, p < .0001,d = .629; Google:



Figure 3: Classification by source of testing data. Accuracy on un-
curated Google images improved with the comprehensive model.

t1512 = 3.705, p < .0001,d = .191; CK+: t1512 = 11.886, p <
.0001,d = .611). Altogether, performance on all datasets im-
proved as a function of training data, but performance on
within-dataset models increased faster than the comprehen-
sive model.

The bold dotted line on Figure 2 denotes average human
categorization performance for the CAFE and Google sets,
although it should be noted that no item-wise validation met-
rics were available for the CK+ set. T-tests revealed that
maximum training sizes on the CK+ dataset exceeded hu-
man performance (t40 = 6.00, p < .0001,d = 1.90). Clas-
sifier performance was significantly below human perfor-
mance for the CAFE (t40 = −3.62, p = .0006,d = 1.145),
Google (t40 = −38.65, p < .0001,d = 9.92), and compre-
hensive datasets (t40 = −39.51, p < .0001,d = 10.68). In-
terestingly, human performance was not significantly corre-
lated with classifier performance at maximum training sam-
ple size for any dataset (CK+: r = −.031, p = .837; CAFE:
r = .260, p = .105; Google: r = −.030, p = .869; Compre-
hensive: r = .240, p = .135), suggesting that the basis on
which categorization decisions were made by the algorithm
differed from human judgments.

It is crucial for future applications that a classifier not only
categorizes within a training dataset, but can also general-
ize beyond that set. A common method of gauging gener-
alizability is to train models for each dataset and test on the
other datasets. However, all of the present datasets, partic-
ularly the CK+ dataset, have unequal numbers of exemplars
for each emotional category. As classifier performance is di-
rectly related to the amount of training data, we would have
to hold training data constant to the minimum possible value
across all emotional categories and datasets, which in this
case would be only 25 exemplars per category (the number of
exemplars for “fear” in the CK+ dataset), for a training set of
only 175 images. Instead, we tested how well a single com-
prehensive model performs against maximally trained mod-

Figure 4: The comprehensive model from all three datasets paral-
leled human performance.

els for each individual dataset (the within-set models). This
comparison demonstrates how the addition of training im-
ages outside the dataset improves performance. An ANOVA
comparing accuracy by model type (within-dataset or com-
prehensive) and source of test images revealed a no effect of
model (F1,234 = 0.001, p = .973,η2 < .001) but a significant
effect of test image source (F2,234 = 1175.71, p < .0001,η2 =
.961) as well as a significant interaction (F3,234 = 47.13, p <
.0001,η2 = .039). Accuracy for the comprehensive model
was significantly greater than the within-set model for Google
(t234 = 6.03, p < .0001,d = .792), not significantly differ-
ent for CK+ test images (t234 = 1.09, p = .140,d = .142)
and significantly less for CAFE test images (t234 = 6.50, p <
.0001,d = .849). Comparing Figure 2 and Figure 3, the over-
all performance deficit of the comprehensive model relative
to the CK+ and CAFE sets in Figure 2 are due to the high
proportion of training images in the comprehensive model
that come from the CAFE set (57.9%). Importantly, these
results show that a comprehensive dataset from multiple cu-
rated sources improves classification of more realistic and un-
controlled Google set.

Finally, it is worthwhile to see how a comprehensive
dataset compares to human raters. Figure 4 compares hu-
man and comprehensive model performance by emotional
category. An ANOVA modeling emotion by rating type
(human vs the comprehensive algorithm) revealed than hu-
man raters were significantly more accurate than the clas-
sifier (F1,546 = 1450.24, p < .0001,η2 = .567). There were
significant differences by emotion (F6,546 = 1021.81, p <
.0001,η2 = .400) as well as a significant interaction (F6,546 =
84.51, p < .0001,η2 = .048).

Overall, these results suggests that the comprehensive
dataset follows similar trends as human raters. Sampling
from multiple datasets improves performance on the highly
uncontrolled Google stimuli and the highly controlled CK+
stimuli; although performance drops for the CAFE stimuli, it



likely stems from the high proportion of images in the com-
prehensive dataset that are sampled from the CAFE. These
results suggest that models comprised of more training data
may approach human performance on varied images.

Discussion
Psychological theories emphasize the causal role of emotions
across a variety of phenomena including learning, memory,
and attention. However, emotion is rarely measured in such
studies due to the cost, inefficiency and tediousness of mod-
ern methods. Widely available and accessible methods for
coding emotion would greatly reduce barriers to advancing
theory by allowing dense measurement of emotion in contin-
uous time. Using a standard machine learning method, we
explored the types of training data one would need to ap-
proach human-level coding of the big 7 emotional categories.
These included curated image sets developed by psychologi-
cal researchers and uncontrolled images drawn from Google
with crowdsourced labels. We find that comprehensive mod-
els generated from multiple datasets improve classification of
uncurated images. Overall model performance follows the
same trends as human performance, and the inclusion of addi-
tional datasets promises to further approach human accuracy.

Cognitive science, and developmental science in particu-
lar, are greatly limited by the methods of the day. A typical
developmental experiment takes place with one child and one
experimenter for fifteen minutes. Such tight controls have led
to important insights at the cost of ecological validity. The
past 20 years have seen incredible improvements to compu-
tational theory and processing power that permit a more flex-
ible study of human behavior. With machine-learning meth-
ods, scientists are no longer bound to brief interventions or
constrained to discrete conditions. Rather, we can now con-
tinuously monitor affect and behavior as a response to the real
world. Instead of inferring surprise from an infant’s looking
times, these models provide a method to measure a reliable
indicator of emotion. Instead of assuming a role of affect in
student outcomes, we can incorporate emotional expression
with an intervention in real time.

This paper represents an effort toward integrating compu-
tational methods with cognitive science with the goal of ac-
tively measuring all features that support cognition. For now,
we have demonstrated the feasibility of using publicly avail-
able software and data to code images in minutes rather than
days. We have not yet reached human-level performance, but
we have shown that the curated datasets that have traditionally
been collected improve performance over training on natural-
istic uncontrolled images. This marks the first step towards
building theories that explain how emotion interacts with cog-
nition in real-world learning scenarios.

Acknowledgments
This research was supported in part by NSF grant CISE-1623486 to
L.B., V.L., and P.S.

References
Baillargeon, R., Scott, R. M., & He, Z. (2010). False-belief under-

standing in infants. Trends in cognitive sciences, 14(3), 110–
118.

Bradski, G. (2000). The open source computer vision library. Dr.
Dobb’s Journal of Software Tools.

Cohn, J. F., Zlochower, A. J., Lien, J., & Kanade, T. (1999). Auto-
mated face analysis by feature point tracking has high con-
current validity with manual facs coding. Psychophysiology,
36(1), 35–43.

Cristianini, N. & Shawe-Taylor, J. (2000). An introduction to sup-
port vector machines and other kernel-based learning meth-
ods. Cambridge University Press.

Csibra, G. (2008). Goal attribution to inanimate agents by 6.5-
month-old infants. Cognition, 107(2), 705–717.

Easterbrook, J. A. (1959). The effect of emotion on cue utiliza-
tion and the organization of behavior. Psychological Review,
66(3), 183.

Egger, H. L., Pine, D. S., Nelson, E., Leibenluft, E., Ernst, M., Tow-
bin, K. E., & Angold, A. (2011). The NIMH child emotional
faces picture set (NIMH-ChEFS): a new set of children’s
facial emotion stimuli. International Journal of Methods in
Psychiatric Research, 20(3), 145–156.

Ekman, P. & Friesen, W. V. (1971). Constants across cultures in the
face and emotion. Journal of Personality and Social Psychol-
ogy, 17(2), 124.

Ekman, P. & Rosenberg, E. L. (1997). What the face reveals: Basic
and applied studies of spontaneous expression using the Fa-
cial Action Coding System (FACS). Oxford University Press.

Itseez. (2016). Open Source Computer Vision Library. https : / /
github.com/itseez/opencv.

LaBarbera, J., Izard, C., Vietze, P., & Parisi, S. (1976). Four-and six-
month-old infants’ visual responses to joy, anger, and neutral
expressions. Child Development, 47(2), 535–538.

Littlewort, G., Bartlett, M. S., Fasel, I., Susskind, J., & Movellan,
J. (2006). Dynamics of facial expression extracted automati-
cally from video. Image and Vision Computing, 24(6), 615–
625.

LoBue, V. & Thrasher, C. (2015). The child affective facial ex-
pression (CAFE) set: Validity and reliability from untrained
adults. Frontiers in Psychology, 5, 1532.

Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z., &
Matthews, I. (2010). The extended Cohn-Kanade dataset
(CK+): A complete dataset for action unit and emotion-
specified expression. In IEEE conference on computer vision
and pattern recognition (pp. 94–101).

Osuna, E., Freund, R., & Girosit, F. (1997). Training support vec-
tor machines: An application to face detection. In IEEE com-
puter society conference on computer vision and pattern
recognition (pp. 130–136).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., . . . Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12, 2825–2830.

Pessoa, L. (2008). On the relationship between emotion and cogni-
tion. Nature Reviews Neuroscience, 9(2), 148–158.

Picard, R. W., Vyzas, E., & Healey, J. (2001). Toward machine emo-
tional intelligence: analysis of affective physiological state.
IEEE transactions on pattern analysis and machine intelli-
gence, 23(10), 1175–1191.

Tong, S. & Chang, E. (2001). Support vector machine active learning
for image retrieval. In The 9th ACM international conference
on multimedia (pp. 107–118).

Viola, P. & Jones, M. (2001). Rapid object detection using a boosted
cascade of simple features. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (Vol. 1).

Yao, A., Shao, J., Ma, N., & Chen, Y. (2015). Capturing au-aware fa-
cial features and their latent relations for emotion recognition
in the wild. In Proceedings of the 2015 acm on international
conference on multimodal interaction (pp. 451–458). ACM.


