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Abstract
With the rise of artificial intelligence (AI) and the desire to ensure that such
machines work well with humans, it is essential for AI systems to actively
model their human teammates, a capability referred to as Machine Theory of
Mind (MToM). In this paper, we introduce the inner loop of human-machine
teaming expressed as communication with MToM capability. We present three
different approaches to MToM: (1) constructing models of human inference
with well-validated psychological theories and empirical measurements; (2)
modeling human as a copy of the AI; and (3) incorporating well-documented
domain knowledge about human behavior into the above two approaches. We
offer a formal language for machine communication and MToM, where each
term has a clear mechanistic interpretation. We exemplify the overarching
formalism and the specific approaches in two concrete example scenarios.
Related work that demonstrates these approaches is highlighted along the way.
The formalism, examples, and empirical support provide a holistic picture of
the inner loop of human-machine teaming as a foundational building block
of collective human-machine intelligence.
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1 Introduction

Effective teaming requires that the mental models of teammates be aligned. Humans
achieve such alignment by inferring teammates’ mental states from observed behavior, and by
communicating their own mental states to their teammates. The capacity of humans to model
the beliefs, goals, and mental states of others is referred to as Theory of Mind (Frith & Frith,
2005). Similarly, successful human-machine teaming requires both humans and the machines
to actively monitor each other and to communicate to ensure alignment in knowledge and
goals. Inference and communication are intertwined, forming a loop. Mental modeling
of the other agents establishes a shared representation of the team. This representation
is updated based on the inference of mental states from the communication signal. The
success of communication thus depends on the accuracy of the communicator’s inferential
model. Repeated communication maintains the alignment of the shared representation across
teammates during the length of the task. This nesting of inference and communication is
the inner loop of human-machine teaming that makes both low-level action coordination
and high-level team planning possible.

Human-machine teaming is more challenging than human-human teaming, because
fully human teams can rely on substantial shared background knowledge and broadly
similar cognitive architecture to support mental model alignment. Because human-machine
teams lack some of these common factors, they need to rely on more active inference and
communication. How to best communicate the reasoning behind AI decisions to human
users is an active area of study and includes the nascent field of explainable AI (XAI)
(Gunning & Aha, 2019). XAI has generated a great variety of explanation methods for
high-performing machine learning models in various domains. However, these methods still
cannot generate explanations guaranteed to be understandable to the humans. This issue
occurs largely because these techniques lack accurate models of human inference. Despite
these challenges, there are potential benefits to human-machine teams that make them worth
the research investment. AI systems are becoming increasingly competent in high-impact
domains, including medical (Lundberg et al., 2018), military (Demir et al., 2015), and
transportation (Nowak et al., 2019) applications. All of these domains require a human
teammate in the loop for accountability, liability, and regulatory reasons. Thus, to fully
benefit from the recent improvements in AI, we argue that these systems need to accurately
model their human teammates, a capacity referred to as Machine Theory of Mind (MToM)
(Rabinowitz et al., 2018).

In this paper, we discuss three avenues that one may go about developing machines
that have MToM capabilities. Our contributions in this paper are as follows:

1. We provide a mathematical formulation of the inner loop of human-machine teaming,
which supplies a precise language to reason about the core components of human-
machine communication (Section 2). See Table 1 for a glossary.

2. We formalize and exemplify a fully psychologically-informed approach to construct
the inner loop of human-machine teaming (Section 3).

3. We formalize and exemplify an approach where the machine uses itself to model its
human teammates (Section 4). This approach is conceptually similar to how humans
use their own beliefs and preferences when modeling others.
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4. We describe and exemplify a third approach that augments the previous two approaches
by incorporating knowledge about human inference in the domain of interest (Section 5).

The overall formalism and the relationship between the three approaches are depicted in
Figure 1. We also discuss the approaches’ relative strengths and weaknesses, as well as their
implications on collective human-machine intelligence (Section 6).

In a recent survey, Gurney and Pynadath categorize MToM approaches into three
broad categories: cognitive architecture, decision theory, and deep learning (Gurney &
Pynadath, 2022). Such categorization based on methodology is common in the MToM
literature (see, for example, Introduction and/or Related Work in Nguyen and Gonzalez,
2022; Rabinowitz et al., 2018; Raileanu et al., 2018). Our paper advances this categorization
by placing MToM approaches in a single framework at the same level of abstraction. In
terms of Marr’s levels of analysis, the paper suggests that MToM approaches ought to
solve the same computational problem (Section 2) and that distinctions among them are
on the algorithmic and representation level (Sections 3–5). The approaches again converge
at the implementation level, because they are all realized on modern computers. In their
review, Gurney and Pynadath also point out that a dire problem in the MToM literature
is the absence of “a generally accepted way of comparing the various implementations" of
MToM. Our framework suggests that decision-theoretic approaches encompass both the
computational and algorithmic levels. Thus, in order to compare these approaches with the
cognitive-architecture and deep-learning approaches, one should separate the formulation of
the decision objectives from the decision-making process. Once all the approaches are aligned
on the same level of abstraction, comparison among them can be carried out more easily,
as exemplified and discussed in Section 6. From this perspective, our work offers a more-
principled taxonomy of MToM approaches based on their algorithmic and representational
choices.

2 Framework

General formulation. We formalize the machine’s communication act by the
following equation:

PT (x | θ, s) = PL(θ | x, s)P (x | s)∑
x′∈X PL(θ | x′, s)P (x′ | s) . (1)

This equation says that the probability of the machine transmitting a particular message,
PT (x | θ, s), is determined by PL(θ | x, s) — the probability that the message x would lead
the human teammate to infer the machine’s mental state θ given the current state of the
world s. The form of this equation is analogous to Bayesian Teaching, where the transmitter
is a teacher (hence the subscript T in PT (·)), and the message receiving teammate is a
learner (hence the subscript L in PL(·)) (Yang & Shafto, 2017). The equation can be
generalized to cooperative communication if the PL(·) in turn depends on PT (·) to form a
recursive reasoning loop (Wang et al., 2020). The recursive reasoning can lead to stronger
communication and inference if certain assumptions are met, but for this paper, we will
focus on the non-recursive version. Below, we define each of the terms in detail.

The world state s is a quantity that represents all task-relevant information about
the environment and team that has been observed so far. Each teammate can maintain their
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Conceptual overview. The inner loop of human-machine teaming hinges on the machine’s
communication posterior, which is formed by combining its communication prior and a
likelihood that captures human inference (Section 2). We present three approaches to construct
this human inference term, the central piece of a Machine Theory of Mind. In Approach 1,
human inference is constructed as a posterior distribution with a psychologically grounded
likelihood and two measured components (Section 3). In Approach 2, human inference is
constructed by projecting the machine’s learning and predicting mechanism onto the human
teammate (Section 4). In Approach 3, domain knowledge, such as textbook features known to
be used by humans and bounded cognitive resources known to limit humans, is incorporated
into approaches 1 and 2 to make them more scalable and accurate (Section 5).

own representation of s based on their own knowledge, actions, and observations. However,
for effective communication, s should include only the information that is shared and aligned
between the transmitter and the receiver. The observable parts of the environment and team
often satisfy this constraint. In general, information alignment is related to the establishment
and maintenance of common ground. Previous work has shown that communication via a
recursion of PT (x | θ, s) and PL(θ | x, s) is robust to small perturbations in common ground
and admits easy realignment schemes (Wang et al., 2020). In case of large deviation in
alignment, a re-establishment of the definition of world states would be necessary.

The mental state θ is a quantity that represents some aspects of the machine’s
inner model. In contrast to the world state, θ is information that is not directly observable
by the human teammates. Effective teaming requires that the mental state of any team
member be accurately represented by any other team member. Applying this requirement to
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human-machine teaming, we constrain θ to carry human friendly semantics, mainly through
an intuitive specification of the environment and task. Such a semantic requirement guides
the form and complexity of θ to be considered, and suggests that θ should account for the
human teammates’ individual properties, such as expertise and experience. Effective teaming
also requires mental state alignment. Thus, while the scope of the machine’s inner model
can include models of itself, the task, the environment, the team, and many other things,
θ should be focused on certain aspects that would help the human teammate to perform
the task given the current world status. Examples of θ include the machine’s fine-grained
decisions, intent, and goals, as well as higher-level constructs such as a plan.

The message x is a collection of data that the machine provides to the human to
convey its mental state. Since x is meant for humans, it should be transmitted in a form
perceivable to humans. The most common modalities of x are images, texts, speech, actions,
as well as sequences and combinations of the above. In reinforcement-learning settings, the
machine’s actions can serve the dual purpose of performing the task and communicating
goals, since humans have an inclination to interpret actions as being goal-oriented (Csibra
& Gergely, 2007). A particularly interesting type of x is the machine’s explanation of
its own actions. The use of explanation allows the task-performing component and the
communication component of the machine to be treated separately. That is, the training of
the machine can be focused on task performance alone; then, post-hoc explanation techniques
can be applied to communicate the machine’s mental state. Equation 1 is a framework for
the communication component for achieving accurate mental state alignment.

The communication posterior PT (x | θ, s) describes how the machine chooses message
x to convey its mental status θ to its human teammates given the current world status s.
This posterior probability is determined by the factors on the right hand side of Equation 1,
i.e., the teammate’s inference posterior PL(θ | x, s), the communication prior P (x | s),
and the set of feasible message X . Because the sum in the denominator of Equation 1 is
intractable except in the simplest cases, the communication posterior is often estimated
through variational or sampling methods that avoid the computation of the denominator
(MacKay, 2003). Statistical properties of the communication posterior, such as its entropy
and moments, can be diagnostic of the suitability of the message pool X and the quality
of the message itself. For example, a large entropy suggests that no message is uniquely
suitable for conveying the mental state of interest. If the communication of this particular
mental state is crucial, one might want to consider extending or reconstructing the message
pool.

The inference posterior PL(θ | x, s) is the probability that the human teammate will
correctly infer the mental state θ intended to be communicated after receiving the message
x given the current world state s. Successful communication would cause the inferred θ in
the inference posterior to align with the intended θ in the communication posterior. Thus,
how much the inference posterior concentrates on the intended mental state is a measure of
the goodness of the message. In sections 3–5 we describe three approaches to model human’s
inference posterior. This term is the centerpiece of our formalism of a Machine Theory of
Mind.

The communication prior P (x | s) is the machine’s probability of choosing a particular
message x in the current situation s, without considering how that signal would change the
teammate’s inference about the machine’s θ. This term can be used to account for general
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information-processing constraints in humans. For example, messages that induce a heavy
cognitive load are a priori given a lower probability.

Example scenarios. To ground the terminology, we now describe the components’
instantiations in two concrete example scenarios: (1) human prediction of the machine
classification and (2) human-machine collaboration involving spatial movements and object
manipulation. In the first scenario, the human is asked to predict the machine’s classification
of an image. This task is useful to evaluate human understanding of machine decision-
making. The machine provides an explanatory message to help the human understand its
decision process using explainable AI techniques (Yang et al., 2021). The second scenario is
typically formalized by a (partially observable) Markov decision process (PO)MDP. In this
scenario, the human and machine each controls an avatar. The two avatars are required
to coordinate together in order to complete the task efficiently. Task completion generally
requires particular coordinated sequences of positional movements and object-handling
actions. Examples of such tasks include the Overcooked game (Carroll et al., 2019) and the
Door game (Raileanu et al., 2018) in a gridworld, as well as a search-and-rescue task (Huang
et al., 2022) and structure-building task (Paleja et al., 2021) in Minecraft.

For the first scenario, s is the image to be classified; θ is the machine’s classification
of that image; and x can be a visual saliency map intended to show which image regions
influence the machine’s classification the most, or a small set of images. The communication
posterior PT (x | θ, s) is then the probability of choosing a particular saliency map or image
set, and the inference posterior PL(θ | x, s) is the probability that the human correctly
predicts the machine’s classification after seeing s and x. The communication prior P (x | s)
can favor saliency maps that highlight as little area as possible, or image set with a small
set size.

For the second scenario, s is the state of the world, including the current positions of
the agents and the states of the objects; θ is the machine’s goal to move to a certain location
or handle a certain object; and x is a real-time view of the machine’s actions. The actions,
therefore, serve the dual-purpose of performing the task and communicating the machine’s
mental states. The PT (x | θ, s) is the machine’s probability of taking and showing a certain
sequence of actions to communicate its current goal. The PL(θ | x, s) is the probability
that the human teammate would recognize the machine’s goal after seeing its actions. The
P (x | s) can be inversely proportional to the length of the action sequence.

3 Approach 1: Psychologically grounded inference posterior

General formulation. As alluded to in the previous section, the central piece to
choosing effective messages from Equation 1 is an accurate model of the inference posterior
PL(θ | x, s), which captures how the human teammate makes inference about the machine’s
mental state after receiving the message. The cognitive science literature has demonstrated
Bayes’ rule as a suitable model of human inference in many domains (Chater et al., 2010).
Following this literature, we again formulate the human inference posterior via Bayes’ rule:

PL(θ | x, s) = P (x | θ, s)P (θ | s)∑
θ′∈Θ P (x | θ′, s)P (θ′ | s) , (2)

On the right hand side, the inference likelihood P (x | θ, s) corresponds to the human
teammate’s belief that the machine would choose message x to convey a mental state θ in
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situation s. The inference prior P (θ | s) is the probability of an agent entertaining mental
state θ in situation s without any communication from other teammates. The denominator
is summed over Θ, the set of mental states considered given the current situation s.

The psychology literature suggests that humans tend to project their own beliefs
and behaviors onto other agents when forming a theory of mind about them (Buckner &
Carroll, 2007). The tendency to project beliefs suggests that the inference prior P (θ | s) can
be approximated by the human teammates’ own prior about mental state θ. Similarly, the
inference likelihood P (x | θ, s) can be modeled by the probability that the human teammate
herself would choose the machine-generated x as the message x to be delivered. This
assignment of the likelihood probability is a form of generalization 1 from a self-generated
message xH to a machine-generated signal x (Yang et al., 2022). Shepard showed that
generalization follows a universal law that decreases monotonically as the psychological
distance between two stimuli increases (Shepard, 1987). Borrowing Shepard’s celebrated
exponential form of generalization, the inference likelihood can be expressed as

P (x | θ, s) = λ exp
[
−λ

(
1 − sim

[
x(θ, s) , xH(θ, s)

])]
. (3)

Here the sim[·, ·] is a similarity function that computes the psychological distance between its
two arguments. Its first argument x is the message produced by the machine via Equation 1.
The second argument xH(θ, s) denotes the message that the human teammate would choose
to use to convey mental state θ in situation s. This term is not shown on the left hand
side of the equation and is considered something internal to the human teammate. The
(1 − sim[·, ·]) indicates that psychological distance is proportional to dissimilarity. The
decrease in generalization is captured by the exponential probability density distribution,
where the λ calibrates the rate at which generalization decays with dissimilarity. The final
step in fully specifying the inference likelihood is the formulation of the similarity function.
Similarity is a well-studied subject in psychology and cognitive science. Notable mathematical
formulations include Tversky’s ratio model for feature-based similarity (Tversky, 1977) and
its continuous extensions (Eelbode et al., 2020).

Scenario on predicting machine classification. To ground this approach in
concrete terms, we return to the first example scenario of human prediction of machine
classification. In this scenario, a human expert aims to predict a machine’s classification θ
on an image s given an explanatory saliency map x that highlights image regions critical for
the machine’s decision. In a recent study, we demonstrated the validity and predictive power
of this approach on communicating ResNet-50’s classifications on images from ImageNet
and Natural Adversarial ImageNet (Yang et al., 2022). Equations 2–3 suggest that we need
access to the prior P (θ | s), human’s self-generated explanation xH , as well as a specification
of the similarity function in order to construct the inference posterior PL(θ | x, s). We
experimentally probed the inference prior by asking human participants to classify images.
We also measured xH by asking participants to highlight, for each image, critical regions for
classifying the image as a particular class. For the similarity function, we used the cosine
similarity function, which suits the vector representation of x and xH obtained and has been

1In the cognitive science literature, generalization refers to the probability that a learned response to a
stimulus would carry over to be the response to another stimulus; in this case, the stimulus is a message and
the response is the act of selecting it.
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demonstrated to be psychologically plausible (Sloman & Rips, 1998). The cosine similarity
can be expressed as,

sim
[
x, xH

]
= ⟨x, xH⟩

∥x∥2∥xH∥2
, (4)

where ⟨·, ·⟩ denotes the inner product of two vectors and ∥·∥2 denotes the 2-norm. Finally,
we measured the actual inference posterior by asking what participants think the AI’s
classification is, based on the explanation given. These measurements allowed us to compute
the fidelity between the model prediction (the inference posterior computed from Equations 2–
4) and the human response (the measured inference posterior). The results showed that the
model prediction matches the measured PL(θ | x, s) well (Spearman’s ρ = 0.86).

The fidelity between model prediction and human response holds over a wide range
of inference posterior, suggesting that the model captured the effect of both good and
misleading messages. Through a series of ablation studies, we found that removing the
inference likelihood from Equation 2, replacing Equation 3 with a non-monotonic decaying
likelihood function, and using a less psychologically plausible similarity function2 all decrease
the fidelity significantly. The decrease is strongest when the likelihood is removed or takes
on the wrong form, and moderate when the similarity function is ill-informed (see Figure
2D in Yang et al., 2022). These ablation results suggest that Equations 2–3 capture the
sufficient core components and their relative importance for modeling human inference of
machine mental states given a message. Furthermore, since these equations led to a high
fidelity between the model and measured inference posterior over a wide range of probability,
using this approach in conjunction with Equation 1 will likely yield good message by virtue
of the optimality of Bayes’ rule.

Scenario on human-machine collaboration involving action sequences. For
this second scenario in a POMDP setting, Nguyen and Gonzalez proposed a similar formalism
to compute the inference likelihood P (x | θ, s) (Nguyen & Gonzalez, 2022). Their formalism
is based on instance-based learning (IBL) theory, with a memory retrieving mechanism
inspired by the well-known cognitive architecture, ACT-R. In their theory, an instance is
a tuple of state, action, and outcome/reward. The action maps to the message x, while
the state-action-outcome tuple maps to the world state s since all elements of the tuple
are observables. The mental state θ is the machine’s private knowledge of a high reward
object, which is to be inferred from the machine’s trajectory. Given instances in the model’s
memory, the theory computes an unnormalized P (x | θ, s) in three steps, namely, instance
activation, instance retrieval, and utility blending. The instances in memory map to xH ; the
activation and retrieval functions together map to the similarity calculation in Equation 4;
and the blending function map to the computation of P (x | θ, s) in Equation 3. A main
result of this approach is that the accuracy of the theory—the model’s inference of the acting
agent’s mental states—matches that of human observers’ inference. This is true across a
spectrum of task difficulty, indicating the validity of constructing the inference likelihood via
psychologically grounded generalization. To apply this IBL approach to generate messages
for human teammates, one would insert measurements of human trajectories and outcomes
into the model’s memory and then compute Equations 1–3 in reverse order. Given that the

2A pixel-by-pixel L1 norm distance.
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inference likelihood captures human inference of machine mental states well, the message
sampled from the machine’s communication posterior should also be effective by virtue of
the optimality of Bayes’ rule.

Ho et al. provided further evidence that this approach is effective by showing the
message generated from Equations 1–3 match messages generated by human teachers (Ho
et al., 2016). In their work, the goal of the machine is to demonstrate to an observer
a hidden goal grid (the θ) among several target grids by positional movements. They
mapped Equations 1–3 to the probability of a teacher’s demonstration, the probability of
an observer’s inference of goal grid, and the probability of taking certain actions under a
given policy, respectively. Because the task environment is simple, the policy that a human
would use in this case is the same as the optimal policy that a machine would obtain by
standard reinforcement learning. In other words, the optimal policy plays the role of xH

in Equation 3. They first showed that while simple task-performing actions are benevolent
to ambiguous paths as long as the goal is achieved, intentional demonstrations favor paths
that allow non-ambiguous inference of goal grid from earlier parts of the trajectory. Then,
they showed that the demonstrations generated from their formalism match what human
demonstrators do for teaching the goal grid. This match further validates Approach 1
because human-human communication is arguably the current gold standard.

Simplifying state space. The main difficulty this approach encounters in the
POMDP setting is that the number of world states, mental states, and messages one might
consider may be very large. Consequently, naive measurement of the inference prior P (θ | s)
and the xH may not be feasible. To make the measurement space more manageable, one
should constrain the space of s, θ, and x as much as possible while not compromising on the
effectiveness of the output message. The number of world states can be reduced through
abstraction—a distillation of a large number of observable spatio-temporal world states
into a small number of latent states that are in some sense equivalent (Abel, 2022; Jong
et al., 2008; Li et al., 2006). A reduction in the number of world states often leads to a
reduction in the number of mental states. This is because whether a mental state should be
considered largely depends on the situation encountered, as implied by the dependence of the
inference prior P (θ | s) on s. The effective number of mental states can be further trimmed
by assigning non-zero prior probability to only mental states that are critical for performing
the task (Ho et al., 2022) and relevant according to a situational awareness analysis (Endsley,
2015). Moreover, the inference of θ from x and vice versa ought to be as straight-forward as
possible to avoid unnecessary ambiguity. Theories of rational speech-act model (Frank &
Goodman, 2012) and optimal cooperative inference (Yang et al., 2018) suggest constraints
on the inference likelihood that guarantee accurate and efficient referencing of θ from x.
Specifically, if the global structure of the inference likelihood on the sets of mental states θ
and messages x satisfies certain hierarchical and sparsity constraints, each x will point to
only one θ with high probability, leading to effective communication of particular θ.

4 Approach 2: Inference posterior based on projection of machine beliefs

General formulation. In the second approach, the machine projects its own
learning mechanism onto the human teammate and selects the message x as if the human
would learn from x in the same way that it itself does. Mathematically, the inference
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posterior takes on a new form:

PL(θ | x, s) =
∑
w

P (θ | w, s)P (w | x). (5)

Here w denotes the set of parameters that fully specifies the machine. The P (w | x) describes
the machine’s learning mechanism, that is, how w is updated given the training data x. The
P (θ | w, s) corresponds to the machine’s prediction mechanism, that is, how the machine’s
mental state changes when encountering s given the particular model specification w. The
sum over w is the formal Bayesian treatment to marginalize out uncertainties in the model
specification.

The idea behind this approach is to approximate human inference by combining
the machine’s learning and prediction mechanisms. From a theory-of-mind perspective, the
machine assumes that the human is a copy of itself, but has not been exposed to the world
state s yet. The message x can thus be thought of as a pedagogical summary of s that
would lead the less-experienced copy of the machine to arrive at the mental state θ, which
the more-experienced copy of the machine developed after encountering s. The machine
learning literature offers a variety of frameworks to specify p(w | x) and to generate the
final x. To name a few, these frameworks include machine teaching (X. Zhu et al., 2018),
influence function (Koh & Liang, 2017), and coreset (Bachem et al., 2017). The common
thread across these frameworks is the selection of additional training data (the message x)
to help the recipient (the model of the human teammate) arrive at the desired state (θ).
From the angle of training machines, this idea shares the flavor of fine-tuning and transfer
learning (Iman et al., 2022).

Contrasting Equations 3–4 with Equation 5, we see that the second approach replaces
the Bayes’ rule and the psychologically grounded likelihood with the machine’s own learning
and prediction mechanism. The justification for such replacement hinges on the machine’s
ability to perform the task well, which can be traced back to the training of the machine.
We adopt the practical assumption that past world states (or data of the same form) are
used as training data. Under this assumption, high machine performance implies: (i) that
the training process can distill useful information from the training data into the machine;
(ii) that the machine’s mapping — characterized by w — from world state to mental state
is meaningful; and (iii) that the machine’s representation of θ is useful for performing the
task. The world state s is typically constructed or curated by humans and hence human
interpretable; thus, this approach is most fruitful if the message x is also constrained to
have a similar form to s. Constraining x in this way will ensure that the message is human
interpretable. Furthermore, because the training based on the training data similar to s led
to meaningful w, messages constrained to have the form of s will suit the machine’s learning
mechanisms well. Below, we return to the two example scenarios to exemplify this second
approach in more concrete terms.

Scenario on predicting machine classification. In a previous work, we studied
the effectiveness of this approach on the prediction-of-classification task (Yang et al., 2021).
The current world state s is an image to be classified. The θ is the classification of that
image predicted by a ResNet50 model trained on the training data set of ImageNet. The
machine used to approximate the inference of the human agent is a ResNet50-PLDA model,
where the final fully connected layer of the RestNet50 model is replaced by a probabilistic
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linear discriminant analysis (PLDA) model. In other words, the initial w includes all the
weights of the neural network up to the last layer plus the parameters of the new PLDA layer.
In the spirit of transfer-learning style inference, we fix the neural network’s weights but allow
the parameters of the PLDA to change. Thus, the P (w | x) in Equation 5 corresponds to the
training of the PLDA. The predictive distribution P (θ | w, s) characterizes the prediction of
the entire ResNet50-PLDA model. The message x takes the form of a small subset of images
to match the form of s. The message x is selected by maximizing the inference posterior
PL(θ | x, s) computed using Equation 5. That is, this message x is a small set of additional
training images that would lead the approximate human inference model to the desired θ.

Empirical results show that the messages produced following Equations 5 and 1 have
a positive effect in shifting people’s mental state to the targeted θ. Specifically, people’s
prediction of the machine’s classification after receiving x correlate with the inference
posterior computed by Equation 5. Further analysis shows that the effectiveness of the
message x positively correlates with the machine’s category-level accuracy and human’s
familiarity with the classes in question. These modulation effects suggest that the message is
most helpful when human and machine are aligned in background knowledge as captured by
the machine’s performance and human’s familiarity on categories, and the communication
effectiveness deteriorates as the alignment weakens. Furthermore, the message is effective
when the machine’s classification matches ground truth, but is ineffective otherwise. The
machine’s misclassification exposes where the representation of world state s differs between
human and machine; thus, the alignment in the representation of s between human and
machine is also a crucial factor for the success of this approach.

Scenario on human-machine collaboration involving action sequences.
Because the inference posterior in this approach is based on the machine’s representation,
it is most convenient to express s, θ, x, and w by quantities in the (PO)MDP, which
representation is shared by both the machine and the human. Thus, we describe the world
state s by the locations of the agents and the states of the object, formalize the mental
states θ (the machine’s goals) by a pair of current and future world states with a horizon,
and restrict the modality of the message x to the modalities of the training data. The
machine’s original w can be obtained by standard multi-agent reinforcement-learning training
techniques such as self-play. With the above specification, the message is a short sequence
of state-action pairs (or a short trajectory) aimed to communicate the machine’s interim
goal, for example, to go and grab a certain object. Equation 5 says that the message is
first processed by the term P (w | x), indicating that the agent would update its parameters
w from the short trajectory x. The update can be interpreted as a form of learning from
demonstration and thus admits techniques from imitation learning (Zheng et al., 2021).
Once the parameters are updated, the prediction term P (θ | w, s) can be derived from
state-action value functions along planning trajectories that lead to the desired world states
specified by θ.

The machine learning literature offers qualitative insights on how well this approach
works. Rabinowitz et al. proposed a Theory of Mind neural network (ToMnet) to infer
an agent’s mental states from the agent’s actions (Rabinowitz et al., 2018). As such, the
function of a ToMnet is analogous to our inference posterior. ToMnet’s architecture is
not based on known cognitive architecture but inspired by a machine learning technique
called meta-learning, making it an approach based on the projection of machine beliefs. The
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authors show that ToMnet can predict the goal-directed actions of random, algorithmic,
and deep RL agents. The coverage of a wide range of agents suggests that the approach has
the capacity to model human, and the successful prediction of goal-directed actions implies
accurate inference of the acting agent’s mental state. Again, by the virtue of Bayes’ rule
(Equation 1), an accurate inference posterior will likely lead to effective communication.

Raileanu et al. also proposed a neural network for inferring mental states (Raileanu
et al., 2018). Their network’s architecture is inspired by Self-Other-Modeling (SOM), that
is, modeling other’s action by asking what my mental state would be if I had acted as the
other player had. The Self-Other-Modeling philosophy is analogous to our idea that the
machine makes inference about the human by assuming the human as a copy of itself in
Approach 2. The authors showed that two agents equipped with the SOM architecture can
infer each other’s mental states and achieve decent reward in several cooperative games.
The reward is not as high as agents who have access to each other’s true mental states, but
is considerable higher than agents who do not infer the mental states of the other agent.
While communication is not intentional in this scenario, the decency with which cooperative
tasks are completed suggests that intentional communication of mental states will also be
effective to certain extents. In a speaker-listener scenario where communication is explicit,
Zhu et al. showed the same qualitative result: a speaker agent equipped with MToM gives
better direction than one without MToM, but performs worse than an agent having access
to the actual mental states (H. Zhu et al., 2021).

A major deficiency of MToM agent in Approach 2 comes from the inherent difference
between human planning and the policy derived from RL training. Carroll et al. confirmed
that collaborative performance depends on mental model differences (Carroll et al., 2019).
They showed that machines trained with self-play or population-based techniques can
coordinate well with themselves but not humans; in contrast, machines that learned from
human demonstrations can coordinate better with humans than machines that did not.

5 Approach 3: Domain-knowledge augmented inference posterior

General idea. The general idea of the third approach is to incorporate knowledge
of human behavior in the domain of interest into the construction of the inference posterior.
This approach relaxes Approach 1 by replacing quantities that are difficult to measure
in Equations 2–3 with models built from knowledge about human cognition in the task
of interest. Approach 3 tightens Approach 2 by infusing known human biases into the
machine to make the machine more human-like. In other words, Approach 3 is a middle-
ground approach between Approach 1, which is grounded in human psychology and based
on measurements, and Approach 2, which relies heavily on the machine’s training and
prediction. To illustrate these ideas, we return to the example scenarios.

Scenario on predicting machine classification. Here, we illustrate relaxing
the measurement requirement of Approach 1 by using well-established expert knowledge.
For the prediction-of-classification task, the prior P (θ | s) can often be measured by asking
the human expert’s classification of each image s, but measurements of xH are typically
much more challenging. For example, while dermatologists provides their diagnoses on
images of skin lesions as part of their routine, they usually do not have the time to engage
in a detailed documentation of their self-generated explanation. Fortunately, for many
high-stake classification problems, the features that human experts pay attention to are
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well-documented. These well-documented features, which we refer to as textbook features,
can be algorithmically encoded to generate approximate xH . Using the skin lesion example,
medical textbooks teach dermatologists in training to diagnose melanoma using the ABCDE
rule (Abbasi et al., 2004), referring to five particular image features. All of these features
can be extracted with image processing and machine vision techniques (Smaoui & Bessassi,
2013), and the extracted features can be used to approximate the self-generated xH . Once
the xH ’s have been encoded, the machine can trace backwards from Equation 4 to Equation 1
to produce a desirable message x for its classification θ on an image s. The validity of this
approach rests on how good of a proxy the encoded textbook features are to the features
human agents use. A simple assessment of the quality of the encoded features is to use these
features in a simple linear model to check whether they carry sufficient discriminant power
for the classification task. In a recent work we showed that a logistic regression model based
on the ABC features (Asymmetry, Border, and Color) performs as well as dermatologists
with 3 to 5 years of experience in diagnosing melanoma (Bokadia et al., 2022). This result
suggests that Approach 3 can produce reasonable inference posterior, and in turn, legitimate
messages.

Scenario on human-machine collaboration involving action sequences. Now
we illustrate tightening Approach 2 by incorporating known human factors into the machine.
A general framework to do so for reinforcement-learning agents is expected utility theory
with bounded resource, also known as resource rationality or bounded optimality (Ho &
Griffiths, 2022). This framework keeps the generality of the reinforcement-learning training
but makes the trained machine more humanistic by constraining the machine to have limited
cognitive resources in the way that humans do. For example, compared to machines, humans
have very limited computational resources to plan ahead. One way that humans deal with
this limitation is state abstraction. While there exist many techniques for state abstraction
as mentioned in Section 3, the machine will be more aligned with the human teammate if it
uses the kind of abstraction that humans use. Ho et al. showed that humans construct a
simplified representation of the environment for efficient planning, called a task construal,
by considering only cause-effect relationships in the environment (Ho et al., 2022). In
particular, using a gridworld maze, they demonstrated that humans pay more attention
to critical obstacles—that is, obstacles that are highly relevant for path planning —than
to irrelevant obstacles, independent of how far the critical obstacles are from the optimal
path. Since a standard RL agent would represent and account for all obstacles by default,
incorporating this specific human factor of task construal would highlight the mental states
that humans are biased to pay attention to and help the machine produce better messages.
Other ways to incorporate human factors into the machine includes supervised-learning of
policy networks from expert behavior (Silver et al., 2016) and reward shaping, either by
direct reward encoding or inverse reinforcement learning.

6 Discussion

Having introduced the three approaches to construct the inference posterior, we now
discuss the approaches’ relative strengths and weaknesses along four dimensions—accuracy,
transparency, personalization, and scalability—and summarize the conclusions in Table 2.

Accuracy. Here accuracy refers to the accuracy by which the machine can infer
human mental states as captured by the inference posterior. An accurate inference posterior
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leads to an effective message by virtue of the optimality of Bayes’ rule. We expect Approach
1 to be the most accurate, followed by Approach 3, and Approach 2 to be the least accurate.
The main factor that determines accuracy is the level of alignment between the machine’s
model of human inference and human’s actual inference. In the scenario on predicting
machine classification, our previous work shows that Approach 1 captures human response
nearly perfectly (Yang et al., 2022) while Approach 2 gets the trend but not the magnitude
of the responses (Yang et al., 2021). We expect the accuracy of Approach 3 to be in between
these two approaches, because textbook features would likely align with human reasoning
better than black-box models but worse than detailed measurements of latent mental states.

In addition to misalignment of mental models, the more complex scenario of human-
machine collaboration includes another factor that can reduce accuracy: as the environment
and task become complex, a message may be equally effective to convey multiple mental
states, creating ambiguity and uncertainty in the inference posterior. The issue of mental
state misalignment is illustrated by the result that machines can better collaborate with
humans when trained on human behavior (Carroll et al., 2019). The second issue of
uncertainty in inference is exemplified by the results that modelling another agent as itself is
not as good as having access to the actual mental state of the modelled agent (Raileanu et al.,
2018; H. Zhu et al., 2021). Based on these two factors, we expect the ranking of Approaches
1–3 in the human-machine collaboration scenario to be the same as that in the prediction-of-
classification scenario. In principle, Approach 1 eliminates the mental model misalignment by
measuring the relevant, latent mental states. In practice, the feasibility of Approach 1 implies
the world has been simplified enough to make the measurement space manageable, which
in turn reduces the probability of encountering ambiguous mapping between messages and
mental states. Similarly, Approach 3 promotes mental model alignment and a more-compact
description of the world by restricting the machine with resource and inference constraints
known to affect humans (Ho et al., 2022). In contrast, Approach 2 by definition lacks explicit
mental model alignment, and often does not deal with the complexity-induced uncertainty
explicitly.

Transparency. Transparency refers to the ease with which humans can understand
how and why the machine generates the messages it generates. As such, the notion of
transparency includes concepts such as interpretability, explainability, and the complexity of
the machine’s inner workings. The transparency ranking of the approaches largely follows
the ranking of accuracy because mental model alignment is also an important determinant of
transparency. In the language of our framework, it is easier for humans to reason about how
inferences can be derived from measurements of human latent mental states xH (Approach
1) and textbook features (Approach 3) than from the machine’s parameters w (Approach 2).

Personalization. Personalization refers to the ability to provide nuanced messages
suitable for a particular teammate. Approach 1 is inherently more personalized than
Approaches 3, as individualized measurements of latent mental state are more personalized
than textbook features. Approach 2 can achieve personalization to some extent via meta-
learning: the idea is to build up a rich prior among θ, s, and x by training the machine
on a good variety of scenarios so that the machine could quickly adapt to new scenarios
from just a few novel training data (Rabinowitz et al., 2018; H. Zhu et al., 2021). From the
perspective of personalization, the different scenarios refer to different human teammates,
each of whom may have their way of reasoning.
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Scalability. We mainly estimate scalability by the amount of work required to
obtain the training data needed to implement each of the three approaches. Approach 1
requires the measurement of the inference prior P (θ | s) as well as the self-generated message
xH on an instance-by-instance basis for each θ, s, and human teammate. Thus, Approach 1
is most suitable for simplified settings where the numbers of world states and mental states
are small. Approach 2 requires many fewer measurements. For machine classifiers, pairs of
s and the most likely θ are sufficient to ensure decent task performance. For autonomous
machines, one only needs to specify the MDP or POMDP environment. These measurements
and specifications are much less labor-intensive compared to Approach 1; thus, Approach 2
is suitable for more complex tasks. With Approach 3, the labor of measuring xH is replaced
by the labor of finding and encoding the knowledge, which is less personalized but more
scalable. In augmenting Approach 2, Approach 3 should either supply expert demonstrations
or re-design the environment and training. Overall, Approach 3 is also suitable for complex
tasks if algorithmic encoding of knowledge is feasible.

Building blocks. Communication is a central component of collective human
intelligence. Task coordination, knowledge accumulation, and even cultural evolution
all depend on effective communication. We argue that communication should also be a
central component of collective human-machine intelligence. This paper introduces the
inner loop of human-machine teaming, which focuses on how machines can communicate
with humans. This inner loop features the dependence of communication on inference, a
form of Machine Theory of Mind. Formalizing the inner loop yields a formal definition of
machine communication and formal models of human inference that are implementable by
the machine. In addition to presenting the formalism, this paper also provides examples
of formal models of human inference across a wide spectrum of representation. Lastly, a
related building block is the machine’s capability to understand natural modalities of human
communication so that humans can communicate with the machine with ease (Chen et al.,
2018). These three building blocks — Machine Theory of Mind, machine’s communication
of its “mental" states, and machine understanding of human communication — form a
basic machine capable of communicating with humans, and hence, a foundation of collective
human-machine intelligence.

In conclusion, our main contribution is an exemplified formulation of the inner loop
of human-machine intelligence that features the mutual dependence between human-machine
communication and Machine Theory of Mind (MToM). This work offers a more-principled
taxonomy of MToM approaches and shows how different representation of MToM could be
constructed. The framework positions existing approaches in the MToM literature from
both the machine-learning and cognitive-science communities under one coherent framework
on the same level of abstraction. This principled repositioning facilitates comparison among
the approaches and makes explicit the connection between cognitive and machine-learning
models of MToM. We consider this connection as an initial but necessary step towards the
emergence of collective human-machine intelligence. A future direction of research is to
extend the scope of world states, mental states, and inference models in this framework to
include more aspects of practical human-machine intelligence, including practical factors
such as natural language communication and emotion factors such as affect.
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The complete Table 1 is shown here for rendering using APA7 man.

Name Symbol Brief description

World state s
The current situation, including all task-relevant in-
formation that has been observed so far about the
environment and the team.

Mental state θ

The machine’s inner model, which includes fine-grained
decisions, intent, and goals as well as high-level con-
structs such as a plan; not directly observable by the
human teammates.

Message x
A collection of data that the machine provides to its
human teammates to communicate its mental state.

Communication poste-
rior PT (x | θ, s)

The probability that the machine chooses message x
to convey its mental state θ in the current situation s
(Equation 1). The posterior’s prior and likelihood are
the communication prior and the inference posterior,
respectively.

Communication prior P (x | s)

The machine’s probability of choosing message x in
the current situation s without considering θ (Equa-
tion 1); often used to account for general information-
processing constraints in humans, such as cognitive
load.

Inference posterior PL(θ | x, s)

The probability that the human teammate will cor-
rectly infer the θ intended to be communicated after
receiving the message x given the current world state
s. It is the likelihood of the communication posterior
(Equation 1) as well as a posterior (Equations 2) with
its own associated prior and likelihood. This inference
captures the inner working of the Machine Theory of
Mind.

Inference prior P (θ | s) The probability that the human agent entertains men-
tal state θ in situation s (Equation 2).

Inference likelihood P (x | θ, s)

The human teammate’s belief that the machine would
choose message x to convey a mental state θ in situation
s; humans assign this probability by comparing how
similar the message x is to the message that they
themselves would provide (Equations 3).

Machine specification w The set of parameters that fully specifies the machine.
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Learning mechanism P (w | x)

The probability of updating the machine’s specification
to w with message x, where x is limited to have the
same form as s; used in Approach 2 to construct the hu-
man teammate’s the inference posterior (Equation 5).

Prediction mechanism P (θ | w, s)

The probability that the machine considers θ in situ-
ation s given the specification w; used together with
P (w | x) to construct the inference posterior (Equa-
tion 5).
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Table 1

Glossary.

Name Symbol Brief description

World state s
The current situation, including all task-relevant in-
formation that has been observed so far about the
environment and the team.

Mental state θ

The machine’s inner model, which includes fine-grained
decisions, intent, and goals as well as high-level con-
structs such as a plan; not directly observable by the
human teammates.

Message x
A collection of data that the machine provides to its
human teammates to communicate its mental state.

Communication poste-
rior PT (x | θ, s)

The probability that the machine chooses message x
to convey its mental state θ in the current situation s
(Equation 1). The posterior’s prior and likelihood are
the communication prior and the inference posterior,
respectively.

Communication prior P (x | s)

The machine’s probability of choosing message x in
the current situation s without considering θ (Equa-
tion 1); often used to account for general information-
processing constraints in humans, such as cognitive
load.

Inference posterior PL(θ | x, s)

The probability that the human teammate will cor-
rectly infer the θ intended to be communicated after
receiving the message x given the current world state
s. It is the likelihood of the communication posterior
(Equation 1) as well as a posterior (Equations 2) with
its own associated prior and likelihood. This inference
captures the inner working of the Machine Theory of
Mind.

Inference prior P (θ | s) The probability that the human agent entertains men-
tal state θ in situation s (Equation 2).

Inference likelihood P (x | θ, s)

The human teammate’s belief that the machine would
choose message x to convey a mental state θ in situation
s; humans assign this probability by comparing how
similar the message x is to the message that they
themselves would provide (Equations 3).

Machine specification w The set of parameters that fully specifies the machine.

Learning mechanism P (w | x)

The probability of updating the machine’s specification
to w with message x, where x is limited to have the
same form as s; used in Approach 2 to construct the hu-
man teammate’s the inference posterior (Equation 5).

Prediction mechanism P (θ | w, s)

The probability that the machine considers θ in situ-
ation s given the specification w; used together with
P (w | x) to construct the inference posterior (Equa-
tion 5).
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Table 2

Relative strengths and weaknesses of the approaches.

Metric Approach 1 Approach 2 Approach 3
(psychologically grounded) (machine belief) (domain knowledge)

Accuracy high low medium

Transparency high low high

Personalization high medium low

Scalability low high medium
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