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Early supervised machine learning (ML) algorithms have used reliable labels from experts to build predictions.

But recently, these algorithms have been increasingly receiving data from the general population in the form of
labels, annotations, etc. The result is that algorithms are subject to bias that is born from ingesting unchecked
information, such as biased samples and biased labels. Furthermore, people and algorithms are increasingly
engaged in interactive processes wherein neither the human nor the algorithms receive unbiased data. Algo-
rithms can also make biased predictions, known as algorithmic bias. We investigate three forms of iterated
algorithmic bias and how they affect the performance of machine learning algorithms. Using controlled ex-
periments on synthetic data, we found that the three different iterated bias modes do affect the models learned
by ML algorithms. We also found that Iterated filter bias, which is prominent in personalized user interfaces,
can limit humans’ ability to discover relevant data.

1 INTRODUCTION

Websites and online services offer large amounts of
information, products, and choices. This information
is only useful to the extent that people can find what
they are interested in. There are two major adaptive
paradigms aiming to help sift through information:
information retrieval (Robertson, 1977; Spark, 1978)
and recommender systems(Pazzani and Billsus, 1997;
Cover and Hart, 1967; Koren et al., 2009; Abdollahi
and Nasraoui, 2014; Goldberg et al., 1992; Nasraoui
and Pavuluri, 2004; Abdollahi and Nasraoui, 2016;
Abdollahi, 2017; Abdollahi and Nasraoui, 2017). All
existing approaches aid people by suppressing infor-
mation that is determined to be disliked or not rele-
vant. Thus, all of these methods, by gating access to
information, have potentially profound implications
for what information people can and cannot find, and
thus what they see, purchase, and learn.

Common to both recommender systems and in-
formation filters is: (1) selection of a subset of data
about which people express their preference by a pro-
cess that is not random sampling, and (2) an iterative
learning process in which people’s responses to the
selected subset are used to train the algorithm for sub-
sequent iterations. The data used to train and optimize
performance of these systems are based on human ac-

tions. Thus, data that are observed and omitted are
not randomly selected, but are the consequences of
people’s choices.

1.1 Iterated Learning and Language
Evolution

In language learning, humans form their own map-
ping rules after listening to others, and then speak the
language following the rules they learned, which will
affect the next learner (Kirby et al., 2014). Language
learning and machine learning have several proper-
ties in common. For example, a ‘hypothesis in lan-
guage is analogous to a ‘model‘ in machine learning.
Learning a language which gets transmitted through-
out consecutive generations of humans is analogous
to learning an online model throughout consecutive
iterations of machine learning.

Researchers have shown that iterated learning can
produce meaningful structure patterns in language
learning (Kirby et al., 2014; Smith, 2009). In partic-
ular, the process of language evolution can be viewed
in terms of a Markov chain, as shown in Figure 1 (a).
We should expected an iterated learning chain to con-
verge to the prior distribution of all hypotheses given
that the learner is a Bayesian learner (Griffiths and



(b) Not defined and referred in the text

Figure 1: Illustration of iterated learning with (bottom) and
without (top) dependency from previous iterations

Kalish, 2005). That is, the knowledge learned is not
accumulated during the whole process. We refer to
this iterated learning model as pure iterated learning
(PIL).

1.2 Relationship between Iterated
Algorithmic Bias and Other Types
of Bias

In statistics, bias refers to the systematic distortion
of a statistic. Here we can distinguish a biased sam-
ple, which means a sample that is incorrectly assumed
to be a random sample of a population, and estima-
tor bias, which results from an estimator whose ex-
pectation differs from the true value of the parame-
ter (Rothman et al., 2008). Within our scope, bias
is closer to the sample bias and estimator bias from
statistics; however, we are interested in what we call
iterated algorithmic bias which is the dynamic bias
that occurs during the selection by machine learning
algorithms of data to show to the user to request la-
bels in order to construct more training data, and sub-
sequently update their prediction model, and how this
bias affects the learned (or estimated) model in suc-
cessive iterations.

Recent researches pointed to the need to pay atten-
tion to bias and fairness in machine learning (McNair,
2018; Goel et al., 2018; Friedler et al., 2018; Klein-
berg et al., 2018; Dwork et al., 2018). Some research
has studied different forms of biases, some are due to
the algorithms while others are due to inherent biases
in the input data or in the interaction between data and
algorithms (Hajian et al., 2016; Baeza-Yates, 2016;
Baeza-Yates, 2018; Lambrecht and Tucker, 2018;
Garcia, 2016; Bozdag, 2013; Spinelli and Crovella,
2017; Chaney et al., 2017; Jannach et al., 2016).
Some work studied biases emerging due to item pop-
ularity (Joachims et al., 2017; Collins et al., 2018;
Liang et al., 2016; Schnabel et al., 2016). A recent
work studied bias that is due to the assimilation bias in

recommender systems (Zhang et al., 2017). Because
recommender systems have a direct impact on hu-
mans, some recent research studied the impact of po-
larization on biasing rating data (Badami et al., 2017)
and proposed strategies to mitigate this polarization in
collaborative filtering recommender systems (Badami
et al., 2018) while other recent research pointed to
bias emerging from continuous feedback loops be-
tween recommender systems and humans (Shafto and
Nasraoui, 2016; Nasraoui and Shafto, 2016). Over-
all, the study of algorithmic bias falls under the um-
brella of fair machine learning (Abdollahi and Nas-
raoui, 2018).

Taking all the above in consideration, we observe
that most previous research has treated algorithmic
bias as a static factor, which fails to capture the it-
erative nature of bias that is born from continuous in-
teraction between humans and algorithms. We argue
that algorithmic bias evolves with human interaction
in an iterative manner, which may have a long-term
effect on algorithm performance and humans’ discov-
ery and learning. We propose a framework for in-
vestigating the implications of interactions between
humans and algorithms, that draws on diverse litera-
ture to provide algorithmic, mathematical, computa-
tional, and behavioral tools for investigating human-
algorithm interaction. Our approach draws on foun-
dational algorithms for selecting and filtering of data
from computer science, while also adapting math-
ematical methods from the study of cultural evolu-
tion (Griffiths and Kalish, 2005; Beppu and Griffiths,
2009) to formalize the implications of iterative inter-
actions.

Figure 2: Evolution of bias between algorithm and human.
A continuous interaction between humans and algorithms
generates bias that we refer to as iterated bias, namely bias
that results from repeated interaction between humans
and algorithms.

In this study, we focus on simulating how the data
that is selected to be presented to users affects the al-
gorithm’s performance (see Figure 2). In this work,
we choose recommendation systems as the machine
learning algorithm to be studied. One reason is that
recommendation systems have more direct interaction
options with humans, while information retrieval fo-
cuses on getting relevant information only. We further



simplify the recommendation problem into a 2-class
classification problem, namely, like/relevant (class 1)
or dislike/non-relevant (class 0), thus focusing on a
personalized content-based filtering recommendation
algorithm.

2 ITERATED ALGORITHMIC
BIAS IN ONLINE LEARNING

Because we are interested in studying the inter-
action between machine learning algorithms and hu-
mans, we adopt an efficient way to observe the effect
from both sides by using iterated interaction between
algorithm and human action.

To begin, we consider three possible mechanisms
for selecting information to present to users: Ran-
dom, Active-bias, and Filter-bias. These three
mechanisms simulate different regimes. Random se-
lection is unbiased and will be used here purely as a
baseline for no filtering. Active-bias selection intro-
duces a bias whose goal is to accurately predict user’s
preferences. Filter-bias selection brings a bias whose
goal is to provide relevant information or preferred
items.

Before we go into the three forms of iterated algo-
rithmic bias, we first investigate PIL. We adopt some
of the concepts from Griffiths (Griffiths and Kalish,
2005). Consider a task in which the algorithm learns
a mapping from a set of m inputs X = {x1,...,xn }
to m corresponding outputs {y,...,y,,} through a la-
tent hypothesis h. For instance, based on previous
purchase or rating data (x,y), a recommendation sys-
tem will collect a new data about a purchased item
(Xnew, Ynew) and update its model to recommend more
interesting items to the users. Here, x represents the
algorithm’s selections and y represents people’s re-
sponses (e.g. likes/dislikes). Following Griffiths’
model for human learners, we assume a Bayesian
model for prediction.

2.1 Iterated Learning with Iterated
Filter-bias Dependency

The extent of the departure that we propose from a
conventional machine learning framework toward a
human - machine learning framework, can be mea-
sured by the contrast between the evolution of iterated
learning without and with the added dependency (see
Figure 1).

We used notation ¢(x) to represent this indepen-
dence. Here, ¢(x) indicates an unbiased sample from
the world, rather than a selection made by the algo-

rithm. On the other hand, with the dependency, the
algorithm at iteration n sees input x,, which is gener-
ated from both the objective distribution g(x) and an-
other distribution pj.., (x|h,) that captures the depen-
dency on the previous hypothesis %, which implies
future bias of what can be seen by the user. Thus, the
probability of input item x is given by:

p(X|hn) = (1 =€) pseen(X|n) +£9(x) (1)

Here ¢ is the weight of two factors which control the
data that algorithm will see. Recall that the probabil-
ity of seeing an item is related to its rank in a rating
based recommendation system or an optimal proba-
bilistic information filter (Robertson, 1977). In most
circumstances, the recommendation system has a pre-
ferred goal, such as recommending relevant items
(with y=1). Then x will be chosen based on the proba-
bility of relevance p(y = 1|x, ), x € X. Assume that
we have a candidate pool X at time n (In practice X
would be the data points or items that the system can
recommend at time n), then
ply =1x,h,)

pseen(x|hn) Yex p(y — 1|X,]’l,,) (2
The selection of inputs depends on the hypothesis,
and therefore information is not unbiased, p(x|h,) #
q(x). The derivations of the transition probabilities in
Eq. 2 will be modified to take into account Eq. 1, and
will become

p(hni1|hn) = Z Z P 1 [%,¥) P(Y[X, htn) Pseen (X[ 1)
xcXyeY
(3)

Eq. 3 can be used to derive the asymptotic behavior
of the Markov chain with transition matrix 7' (h,41) =

p(hn-H |hn), ie.
p(hn+1) = Sp(hn+1) + (1 - E)Tbia‘v (4)

Here, Tpiyq is:

Z Zp(hn—Fl‘X:Y) Z P(Y[X, 1) Pseen(X|hn) | p(hn)

xeXyeY hn,€H
(5)

Thus, iterated learning with filter bias converges to
amixture of the prior and the bias induced by filtering.
To illustrate the effects of filter bias, we can analyze
a simple and most extreme case where the filtering
algorithm shows only the most relevant data in the
next iteration (e.g. top-1 recommender). Hence

x'P = argmaxP(y|x,h) (6)
X

Pacen(Xl/n) = { 1 forx = x'oP } N

0 otherwise



Y Y p(huiilxy) Y p(YIXP ) | p(ha)

xeXyey hp€H
®)

Based on equation 3, the transition matrix is re-
lated to the probability of item x being seen by the
user, which is the probability of belonging to class
y = 1. The fact that x;/” maximizes p(y|x,h) sug-
gests limitations to the ability to learn from such data.
Specifically, the selection of relevant data allows the
possibility of learning that an input that is predicted
to be relevant is not, but does not allow the possibility
of learning that an input that is predicted to be irrel-
evant is actually relevant. In this sense, selection of
evidence based on relevance is related to the con-
firmation bias in cognitive science, where learners
have been observed to (arguably maladaptively) se-
lect data which they believe to be true (i.e. they fail
to attempt to falsify their hypotheses) (Klayman and
Ha, 1987). Put differently, recommendation algo-
rithms may induce a blind spot where data that are
potentially important for understanding relevance
are never seen.

Thias =

2.2 Iterated Learning with Iterated
Active-bias Dependency

Active learning was first introduced to reduce the
number of labeled samples needed for learning an ac-
curate predictive model, and thus accelerate the speed
of learning towards an expected goal (Cohn et al.,
1996). Instead of choosing random samples to be
manually labeled for the training set, the algorithm
can interactively query the user to obtain the desired
data sample to be labeled (Settles, 2010).

Pactive (X|h) o< 1— p(f’|X,]’l) 9)
where § = argmax, (p(y|x,/)). Given x and h, § aims
to select the most certain predicted label, whether it is
class y=0 or class y=1. Hence in Eq. 9, x values are
selected to be the least certain about ¥, the predicted
y value.

Assuming a simplified algorithm where only the
very uncertain data are selected, we can investigate
the limiting behavior of an algorithm with the active
learning bias. Assuming a mixture of random sam-
pling and active learning, we obtain:

x*" = argmax (1 — p(J|x,h)) (10)
X
p(hn—H) :3P(hn+1)+(1 _S)Tactive (11)
Where
acme— Z ZP n+1|X y Z p y|xact h (
xeXyeY hp€eH
(12)

n)

The limiting behavior depends on the iterated ac-
tive learning bias, x¢. This is, in most cases, in oppo-
sition to the goal of filtering, the algorithm will only
select data point(s) which are closest to the learned
model’s boundary, if we are learning a classifier for
example. In contrast, the filtering algorithm is almost
certain to pick items that it knows are relevant.

2.3 Iterated Learning with Random
Selection

The iterated random selection is considered as a triv-
ial baseline for comparison purposes. This selection
mechanism randomly chooses instances to pass to the
next learner during iterations.

2.4 Evaluating the Effect of iterated
algorithmic bias on Learning
Algorithms

In order to study the impact of iterated bias on an al-
gorithm, we compute three properties: the blind spot,
boundary shift, and the Gini coefficient. These prop-
erties are defined below.

2.4.1 Blind spot

The blind spot is defined as the set of data available
to a relevance filter algorithm for which, the proba-
bility of being seen by the human interacting with the
algorithm that learned the hypothesis £, is less than d:

DY = (X € X | pseen(x|h) < 8} (13)

In the real world, some data can be invisible to
some users because of bias either from users or from
the algorithm itself. Studying blind spots can enhance
our understanding about the impact of algorithmic
bias on humans. In addition, we define the class-1-
blind spot or relevant-item-blind spot as the data in
the blind spot, with true label y =1

Dy ={xeDf and y=1)}

Note that the blind spot in Eq. 13 is also called all-
classes-blind spot.

(14)

2.4.2 Boundary shift

Boundary shift indicates how different forms of iter-
ated algorithmic bias affect the model / that is learned
by an algorithm. It is defined as the number of points
that are predicted to be in class y = 1 given a learned

model A:
b= Zp(y: 1]x,h)

xeX

15)



Here b is the number of points that are predicted as
class y = 1 given a learned model i. This number
helps to quantify the extent of shift in the boundary as
a result of different bias modes.

2.4.3 Gini Coefficient

We also conduct a Gini coefficient analysis on how
boundary shifts affect the inequality of predicted rel-
evance for the test set. Let p; = p(y = 1|x;,h). For
a population with n values p;, i = 1 to n, that are in-
dexed in non-decreasing order ( p) < p(i4+1))- The
Gini coefficient can be calculated as follows (Stuart
etal., 1994):

Yii(2i—n—1)pg

nyi P()

The higher the Gini coefficient, the more unequal are
the frequencies of the different labels. The Gini co-
efficient is used to gauge the impact of different iter-
ated algorithmic bias modes on the heterogeneity of

the predicted probability in the relevant class during
human-machine learning algorithm interaction.

G=(

) (16)

3 EXPERIMENTS

As stated in section 3, we mainly focus on a two-
class model of recommendation in order to perform
our study. In this situation, any classical supervised
classification could be used in our model (Domingos
and Pazzani, 1997; Hosmer Jr et al., 2013; Cortes and
Vapnik, 1995). For the purpose of easier interpreta-
tion and visualization of the boundary and to more
easily integrate with the probabilistic framework in
section 2, we chose the Naive Bayes classifier.

Synthetic Data: A 2D data set (see figure 3)
was generated from two Gaussian distributions corre-
sponding to classes y € {0, 1} for like (relevant) and
dislike (non-relevant), respectively. Each class con-
tains 1000 data points centered at {—2,0} and {2,0},
with standard deviation ¢ = 1. The data set is then
split into the following parts: Testing set: used as a
global testing set (200 points from each class); Val-
idation set: used for the blind spot analysis (200
points from each class). Note that the subset is sim-
ilar to the testing set, however we only use this one
for blind spot analysis to avoid confusion; Initial-
izing set: used to initialize the first boundary (we
tested initialization with class 1/class O ratios as fol-
lows: 100/100). Note that initialization set can also
be called initial training set; Candidate set: used as
query set of data which will be gradually added to the
training set (points besides the above three groups that
will be added to the candidate set).

Second Dimension

- Data from class 0
Data from classl

B o 3
First Dimension

Figure 3: Original data with two classes

The reason why we need the four subsets is that
we are simulating a real scenario with interaction be-
tween humans and algorithms. Part of this interac-
tion will include picking query data items and label-
ing them, thus augmenting the training set. Thus,
to avoid depleting the testing set, we need to isolate
these query items in the separate “candidate pool”. A
similar reason motivates the remaining separate sub-
sets in order to keep their size constant throughout all
the interactions of module learning.

Methods: We wish to simulate the human-
algorithm interaction at the heart of recommendation
and information filtering. To do so, we initialize the
models following the initialization set. Then, we ex-
plore three forms of iterated algorithmic bias modes
(see Section 2). We simulate runs of 200 iterations
where a single iteration is comprised of the algo-
rithm providing a recommendation, the user labeling
the recommendation, and the algorithm updating its
model of the user’s preferences. Each combination
of parameters yields a data set that simulates the out-
come of human and algorithm interacting. We simu-
late this whole process 40 times independently, which
generates the data that we will use to investigate sev-
eral research questions.

4 RESULTS

The key issue is to study whether and how in-
formation filtering may lead to systematic biases in
the learned model, as captured by the classification
boundary. Based on the three metrics introduced in
section 2.4, we ask the question: How does iterated
algorithmic bias affect the learned categories?

To answer this question, we adopt four different
investigating approaches. First, we will compare the
inferred boundaries after interaction to the ground
truth boundaries. Second, we will focus on the effects
of iteration alone by analyzing the boundary before
interaction and after. Third, We use the Gini coeffi-
cient to measure the heterogeneity or inequality of the
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Figure 4: Boundary shift (Eq. 15) based on the three iter-
ated algorithmic bias forms. The y axis is the number of
testing points which are predicted to be in class y=1. The it-
erated filter bias diverges from the ground truth significantly
with more iterations.

predicted label distribution in the testing set. Fourth,
we investigate the size of the blind spot induced by
each of the iterated algorithmic bias modes. Together,
these will describe the outcomes of algorithmic bias,
in terms of the induced blind spot.

RQ 1: Do different forms of iterated algorith-
mic bias have different effects on the boundary
shift? To answer this question, We assume that the
initialization is balanced between both classes. As
shown in Eq. 1, we here assume that g(x) is iden-
tical for all data points, thus we can ignore the sec-
ond part of the equation, i.e. the probability of being
seen is only dependent on the predicted probability of
candidate points. Note that we could get some prior
probability of X;, in which case we could add this pa-
rameter to our framework. Here, we assume them to
be the same, hence we set € = 0.

We wish to quantify differences in the boundary
between the categories as a function of the different
algorithm biases. To do so, we generate predictions
for each test point in the test set by labeling each point
based on the category that assigns it highest probabil-
ity. We investigate the proportion of test points with
the relevant label y = 1 at two time points: prior to
human-algorithm interactions (immediately after ini-
tialization), and after human algorithm interactions.
Note that we use ‘FB’ to represent filter bias, ‘AL’ for
active learning bias, and 'RM’ for random selection.

We run experiments with each of the three forms
of algorithm bias, and compare their effect on bound-
ary shifts. We also report the effect size based on
Cohen d (Cohen, 1988). In this experiment, the ef-
fect size (ES) is calculated by ES = (Boundary,—o —
Boundary,—»00) /std(+), here std(-) is the standard de-
viation of the combined samples. We will use the
same strategy to calculate the effect size in the rest
of this paper. The results indicate significant differ-
ences for the filter bias condition (p < .001 by Mann-
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Figure 5: Box-plot of the Gini coefficient resulting from
three forms of iterated algorithmic bias. The x-axis is the
iterated algorithmic bias modes. ‘First’” means the first iter-
ation (t=0), while ‘last’ indicates the last iteration (t=200).
An ANOVA test across these three iterated algorithmic bias
forms shows that the Gini index values are significantly dif-
ferent. The p-value from the ANOVA test is close to 0.000
(<0.05), which indicates that the three iterated algorithmic
bias forms have different effects on the Gini coefficient.

Whitney test or t-test, effect size = 1.96). In contrast,
neither the Active Learning, nor the Random con-
ditions resulted in statistically significant differences
(p = .15 and .77 by Mann-Whitney test, or p = .84
and 1.0 by t-test; effective sizes .03 and 0.0, respec-
tively).

To illustrate this effect, we plot the number of
points assigned to the target category versus ground-
truth for each iteration. Figure 4 shows that ran-
dom selection and active learning bias converge to the
ground-truth boundary. Filter bias, on the other hand,
results in decreasing numbers of points predicted in
the target category class 1, consistent with an overly
restrictive category boundary.

RQ 2: Do different iterated algorithmic bias
modes lead to different trends in the inequality of
predicted relevance throughout the iterative learn-
ing given the same initialization? To answer this
question, we run experiments with different forms of
iterated algorithmic bias, and record the Gini coeffi-
cient when a new model is learned and applied to the
testing set during the iterations.

Although the absolute difference between the first
iteration and the last iteration is small (see Figure 5),
a one-way ANOVA test across these three iterated al-
gorithmic bias forms shows that the Gini index val-
ues are significantly different. The p-value from the
ANOVA test is close to 0.000 (< 0.05), which in-
dicates that the three iterated algorithmic bias forms
have different effects on the Gini coefficient.

Interpretation of this result: Given that the Gini
coefficient measures the inequality or heterogeneity
of the distribution of the relevance probabilities, this
simulated experiment shows the different impact of
different iterated algorithmic bias forms on the het-
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Figure 6: Box-plot of the size of the class-1-blind spot for
all three iterated algorithmic bias forms. In this figure, the
x-axis is the index of the three forms of iterated algorithms
biases, ‘First’ means the first iteration (t=0), while ‘last’ in-
dicates the last iteration (t=200). As shown in this box-plot,
the initial class-1-blind spot is centered at 7. This is because
the 200 randomly selected initial points from both classes
force the boundary to be similar regardless of the random-
ization.

erogeneity of the predicted probability to be in the rel-
evant class within human machine learning algorithm
interaction. Despite the small effect, the iterated algo-
rithmic bias forms affect this distribution in different
ways, and iterated filter bias causes the largest het-
erogeneity level as can be seen in Figure 5. The fact
that filtering increases the inequality of predicted rel-
evance means that filtering algorithms may increase
the gap between liked and unliked items, with a pos-
sible impact on polarizing user preferences.

RQ 3: Does iterated algorithmic bias affect the
size of the class-1-blind spot, i.e. is the initial size of
the blind spot Dg significantly different compared
to its size in the final iteration? The blind spot rep-
resents the set of items that are much less likely to be
shown to the user. Therefore this research question
studies the significant impact of an extreme filtering
on the number of items that can be seen or discovered
by the user, within human - algorithm interaction. If
the size of the blind spot is higher, then iterated algo-
rithmic bias results in hiding items from the user. In
the case of the blind spot from class 1, this means that
even relevant items are affected.

We run experiments with 8 = 0.5, and record the
size of the class-1-blind spots with three different it-
erated algorithmic bias forms. Here, we aim to check
the effect of each iterated algorithmic bias form. As
shown in Table 1, filter bias has significant effects on
the class-1-blind spot, while random selection and ac-
tive learning do not have a significant effect on the
class-1-blind spot size (see Figure 6). The negative
effect from iterated filter bias implies a large increase
in the class 1 blind spot size, effectively hiding a sig-
nificant number of ‘relevant’ items.

Table 1: Results of the Mann-Whitney U test and t-test com-
paring the size of the class-1-blind spot for the three forms
of iterated algorithmic bias. Bold means significance com-
puted at p<0.05. The effect size is as (BlindSpot|—g —
BlindSpot|;—200)/std(-). The negative effect size shows
that filter bias increases the class-1-blind spot size. For
active learning bias, the p-value indicates the significance,
however the effect size is small. Random selection has no
significant effect.

Filter Active Random
Bias Learning | Selection
Mann test | 2.4e—10 | 0.03 0.06
p-value
t-test 2.2¢—10 | 0.03 0.06
p-value
effect size | -1.22 -0.47 -04

Interpretation of this result: Given that the blind
spot represents the items that are much less likely to
be shown to the user, this simulated experiment stud-
ies the significant impact of an extreme filtering on
the number of items that can be seen or discovered
by the user, within human-machine learning interac-
tion. Iterated filter bias effectively hides a significant
number of ‘relevant’ items that the user misses out
on compared to AL. AL has no significant impact on
the relevant blind spot, but increase the all-class blind
spot to certain degree. Random selection has no such
effect.

4.1 Results for Higher Dimensionality
Data Sets

We performed similar experiments on 3D and 4D syn-
thetic data using a similar data generation method.
Our experiments produced similar results to the 2D
data. We found that as long as the features are in-
dependent from each other, similar results are ob-
tained to the 2D case above. One of the possi-
ble reason is that when features are independent, we
can reduce them in a similar way to the 2D syn-
thetic data set, i.e., one set of features highly re-
lated to the labels and another set of features non-
related to the labels. Another possible reason is that
independent features naturally fit the assumption of
the Naive Bayes classifier. Finally, we generated
a synthetic data with 10 dimensions, centered at (-
2,0,0,0,0,0,0,0,0,0) and (2,0,0,0,0,0,0,0,0,0) with zero
covariance between any two dimensions. We follow
the same procedure as the 2D synthetic data. Table
2 shows that the 10D synthetic data leads to simi-
lar results to the 2D synthetic data set. To conclude,
repeated experiments on additional data with dimen-
sionality ranging from 2D to 10D led to the same con-



Table 2: Experimental results with 10D synthetic data set.

The effect size is calculated by (Measurement|;—y —

Measurement|;—»00)/std(-). The measurements are the three metrics in section 2.4. We report the paired t-test results.
For filter bias mode (FB), the results are identical to those of the 2D synthetic data across all three research questions. Active
learning bias (AL) generates the same result as for the 2D synthetic data. Random selection (RM) has no obvious effect,

similarly to the 2D synthetic data experiments.

Bias type Boundary Shift | Blind spot | Inequality
(p-value, ES) (p-value, ES) | (p-value, ES)
FB (8e-15,1.4) (3e-13,-1.4) | (1.8e-13,-1.6)
Statistical test | AL (0.68, -0.09) (0.5,0.15) (1.8e-15, 1.63)
RM (0.17,0.17) (0.1, -0.3) (0.8,-0.01)
clusions that we have discussed for the 2D data set. REFERENCES

S CONCLUSIONS

We investigated three forms of iterated algorith-
mic bias (filter, active learning, and random) and how
they affect the performance of machine learning al-
gorithms by formulating research questions about the
impact of each type of bias. Based on statistical anal-
ysis of the results of several controlled experiments
using synthetic data, we found that:

1) The three different forms of iterated algorith-
mic bias (filter, active learning, and random selection,
used as query mechanisms to show data and request
new feedback/labels from the user), do affect algo-
rithm performance when fixing the human interac-
tion probability to 1.
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two forms of algorithmic biases. This means that
iterated filter bias, which is prominent in person-
alized user interfaces, can limit humans’ ability to
discover data that is relevant to them.

3) Iterated filter bias increases the inequality of
predicted relevance. This means that filtering al-
gorithms may increase the gap between liked and
unliked items, with a possible impact on polarizing
user preferences.

In this paper, we showed preliminary results on
synthetic data. In real life, however, we have more
complicated data. Thus, we are motivated to conduct
experiments on real data in our future work. We also
plan to study more research questions related to vari-
ous modes of algorithmic bias.
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