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Abstract

People combine their abstract knowledge about the
world with data they have gathered in order to guide
search and prediction in everyday life. We present
a Bayesian model that formalizes knowledge transfer.
Our model consists of two components: a hierarchical
Bayesian model of learning and a Markov Decision Pro-
cess modeling planning and search. An experiment tests
qualitative predictions of the model, showing a strong
fit between human data and model predictions. We con-
clude by discussing relations to previous work and future
directions.

People combine their abstract knowledge about the
world with data they have gathered in order to guide
search and prediction in everyday life. Rather than sim-
ply treat every search as a novel event, individuals ap-
ply knowledge from previous experiences to make pre-
dictions about new situations. Using knowledge about
distribution of items across instances, such as a prizes in
a cracker jack boxes, individuals have expectations about
how many times you will have to reach in to get the prize.
Because cracker jacks boxes have more popped corn and
peanuts than prizes, you might use that knowledge to
predict that any given hand-full will only contain popped
corn and peanuts. Now imagine an alternative scenario
in which you got your cracker jacks box from a discount
bin at the factory. If we found a few boxes contained
almost 50% prizes, we could generate a different expec-
tation about the process that created the boxes, and use
this knowledge to make predictions about what we will
pull out of the box next, and what we might expect from
the next box. Here knowledge about boxes, and the pro-
cesses that generate boxes allow us to make predictions
about novel situations. In general, knowledge at multiple
levels of abstraction allows us to generate expectations
and predictions for novel situations.

Recent research has provided insight into some as-
pects of this ability to transfer knowledge. Hierarchi-
cal Bayesian models (HBMs) have been used to model
how people can combine past experience with sparse
data in a novel situation to make confident and accurate
predictions. For example, Kemp, Perfors, and Tenen-
baum (2007) showed that hierarchical Bayesian models
can capture how children’s experience with with nouns
causes them to infer that objects with the same name
tend to have the same shape, allowing generalization of
novel names from only one or two examples. A sepa-
rate line of research has focused on prediction in un-

structured stochastic environments (especially so-called
bandit problems) and investigated how people develop
strategies in these situations (Steyvers, Lee, & Wagen-
makers, 2008; Acuña & Schrater, 2008; Gittins, 1979).
However, this work has not addressed how people use
abstract knowledge to guide reasoning about novel situ-
ations in familiar environments. In fact, Steyvers et al.
(2008) specifically suggest the incorporation of a learning
element into these problems would be a useful extension
of the work. In this paper, we propose and test a frame-
work for just such a purpose; showing how people use
experience to guide search and prediction.

A Bayesian model of search and
prediction in novel situations

Our approach to modeling how people use previous ex-
perience to guide inference and search in novel situations
combines the previously mentioned hierarchical Bayesian
models with a Markov Decision Process (MDP). Hierar-
chical Bayesian models provide a representation of how
experience can affect beliefs at multiple levels of abstrac-
tion, allowing predictions about novel situations (Kemp
et al., 2007). Markov decision processes provide a model
of search and decision making (Russell & Norvig, 2002).
We briefly introduce each approach and then describe
how to integrate the two approaches, using a simplified
problem to develop intuitions.

Instead of cracker jacks boxes, which have predictable
mixture proportions, imagine a discount store that sells
boxes of cookies that don’t have predictable mixtures. A
clerk at the discount store suggests a game in which, if a
boy correctly guesses the next cookie drawn from a box,
he gets to keep the box. However, the boy’s mother is
about to leave, putting the boy at risk of not getting any-
thing. What should he do? In the case of discount store
boxes, which are not well-mixed, if the boy can draw one
example before guessing, he can dramatically increase his
chance of guessing the next cookie correctly. But if the
boy were at a regular grocery store, where the boxes were
well-mixed, asking to see one sample would give him no
information – his chances of guessing correctly remain
at 50/50. With our model, we can represent the boy’s
abstract knowledge about mixtures of boxes, which in
Figure 1 is Level 3 knowledge. And we can further show
how this abstract knowledge should inform his decision
to draw or guess.
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Figure 1: Hierarchical knowledge representation. At the top, the α and β are parameters that represent our confidence about
the mixtures of the boxes and the balance between the outcomes. At level 2, we can have knowledge about the proportions in
each different box, and at the lowest level, we can have knowledge about specific data (here, cookies).

Modeling abstract knowledge and
prediction
To keep our example simple, we will imagine only two
kinds of cookies, chocolate chip and sugar, and two
places where boxes of cookies can come from. Beliefs
about boxes’ mixtures are expressed as proportions, and
based on samples of cookies from a box, we can make
inferences about the proportions of cookies. To incorpo-
rate prior experience with boxes of cookies, we imagine
that all of the boxes come from some common generat-
ing process by which well-mixed boxes go to the grocery
store and poorly mixed boxes end up at the discount
chain (see Figure 1).

This hierarchical framework allows us to represent
knowledge at level 3 which informs and constrains beliefs
at level 2. For example, if our previous experience has
been with well-mixed boxes, we could infer that boxes
from the grocery are most-often well-mixed. Or, based
on purchases from the discount store, we conclude that
boxes tend to be all one kind or the other. For our ex-
ample, we will refer to well-mixed boxes as coming from
the even condition or distribution, and boxes with little
variation as coming from the biased condition or distri-
bution. If we have a box from the discount store, then
the single observation of a cookie allows a strong infer-
ence that the box is full of that kind of cookie. However,
if we have a box of cookies from the grocery then one
observation is unlikely to strongly affect our beliefs.

Formally, we can express beliefs about the contents of
the box using a parameter, θ, that represents the pro-
portions. A draw of a single instance, y is then a flip of a
coin with the appropriate weight drawn from a Binomial
distribution, p(y|θ). We can express beliefs about the
distribution of θ at level 3. The Beta distribution takes
two parameters, β which represents the balance between

the two outcomes, and α which represents the strength
of those beliefs. Together, these parameters can express
a strong belief in the even condition (that produces well-
mixed boxes) through a high value of α (> 2), or a strong
belief in the biased condition through a low value of α
(as it goes to 0).

Our goal is to make a prediction about which cookie
is likely to be drawn next from a box, ỹ, given some
observed cookies, y, and abstract beliefs, α and β. We
can make this prediction by integrating over values of θ,

p(ỹ|y, α, β) =
∫
θ

p(ỹ|θ) · p(θ|y, α, β)dθ. (1)

Predicting ỹ given θ is like imagining the outcome of
the toss of a coin with weight θ. Because of our choice
of Binomial and Beta distributions, the integral over θ
given y, α, and β is analytically tractable, and turns
out to be another Beta distribution, with parameters
updated based on the observation y (Gelman, Carlin,
Stern, & Rubin, 2003).

For the even distribution, our belief that boxes tend
to be 50-50, mitigates the influence of any observation
on our beliefs about the contents of the box. However,
for the biased distribution, our belief that boxes are all
one kind or the other allows a robust inference about the
contents of the box, and hence the likely outcome if we
were to sample one cookie.

Modeling the search for information
Given different kinds of abstract knowledge, how much
information should we obtain before guessing? The an-
swer depends on the rewards (in our example, how much
the boy likes sugar cookies), costs (the reduction in re-
ward), and how much information can be gained by con-
tinuing to sample. Perhaps the boy’s mother is in the



checkout line at the discount store and is leaving with or
without the cookies. Not having any cookies at all is a
heavy price to pay, so the boy might not sample any.

Markov decision processes formalize the problem of
which action to take (i.e. wait for one sample or just
guess). We compute the expected value of each deci-
sion based on our rewards, costs, and the probability of
different possible outcomes. In our example, there may
be information to be gained by looking at one or a few
cookies, but it has to be traded off against whether the
boy will get a box at all if he takes too much time to
haggle.

Figure 2: The top row shows two possible distributions that
generate boxes of cookies. The left distribution generates
boxes that tend to be either all chocolate chip cookies or all
sugar cookies, while in the right case, boxes of cookies tend
to be evenly mixed. The second row shows typical boxes
from each distribution, with the proportion of chocolate chip
and sugar cookies in the box. The bottom row shows the
possible states of the game. The numbers in each state are
the probability of our model guessing at each point with a
value of ρ = 5. Note that for the left column, the model
predicts a strategy of sampling one cookie to see which kind
it is, then guessing that kind, while for the right, the model
predicts that guessing is the best strategy.

We begin by defining a state xi,j which represents our
knowledge about the draws we have already made (see
Figure 2). For example, in state x1,0 we have drawn one
sugar cookie. Because our model of draws is a Binomial
distribution with a Beta prior, the probability of guess-
ing correctly p(correct|xi,j) is based on the counts of our

observations smoothed by our prior,

P (correct|xi,j) =

{
i+αβ1

i+j+αβ+α(1−β) if i >= j
j+αβ2

i+j+αβ+α(1−β) i < j.

The expected value of guessing in a state depends on
the reward associated with a correct guess. For each
state, V (r|xi,j) is the total reward minus costs incurred
by draws up to that point. The expected value of guess-
ing then is the product of the reward for a correct guess
and the probability being correct,

V (guess|xi,j) = p(r|xi,j)guess(r|xi,j). (2)

Guessing is valued to the degree that it is both likely to
be correct and going to obtain a reward.

The value of sampling can be determined by consider-
ing the value of guessing given the possible outcomes of
the sampling, weighted by their probability

V (sample|xi,j) =
∑

i′≥i,j′≥j,
i′,j′ 6=i,j

V (guess|xi′,j′)p(xi′,j′ |xi,j)

(3)
where p(xi′,j′ |xi,j) is the probability of going from

state xi,j to state xi′,j′ . This is the expected value of
guessing in the future.

We formalize the decision to guess or sample using the
Luce choice rule (Luce, 1959),

p(sample|xi,j) ∝
[

V (sample|xi,j)
V (sample|xi,j) + V (guess|xi,j)

]ρ
(4)

where ρ is a parameter that controls how strictly we
choose the decision to sample or guess that maximizes
the expected reward.

For the biased and even distributions, the model pre-
dicts qualitatively different behavior (see Figure 2). In
the biased condition, because there is much to be gained
from a single observation, the model predicts sampling
first. Because this is enough information to be confident
about the proportions in the box, it predicts that one
sample is enough. Given the even condition, the model
predicts that there is no need to search. Because all
boxes tend to be well-mixed, the outcome of one or even
a few observations is unlikely to affect our beliefs enough
to matter.

Learning higher-order knowledge to guide
search
In addition to learning about box proportions assuming
fixed knowledge about their origins, our approach can
be extended to learn about new stores. This extended
model captures learning about stores using the priors on
the parameters α and β, allowing the model to have un-
certainty about what stores’ cookie boxes are like. These
priors will allow us to make inferences from experience
with one store to stores in general.



Figure 3: Inferred values of alpha by trial for two different
orders. Model simulations show that when the biased con-
dition is presented before the even condition, the model has
greater difficulty in learning in the even condition.

Formally, to learn at this more abstract level, we place
a distribution on our beliefs about the stores. We want
to express a belief about the kinds of boxes a store will
have – does it have one kind or the other, or both? To
express uncertainty about the distribution of boxes, we
must place distributions on α and β, and learn the values
of these parameters for each factory, and beliefs about
factories in general. The strength parameter is α and
a natural prior for this is an exponential distribution.
The exponential distribution has a single parameter, γ,
and to express weak neutral beliefs we place a normal
prior on log(γ) with mean 1 and variance 5. Similarly,
we must place a prior on β and learn about the value of
this parameter. A natural choice is another Beta distri-
bution, with parameters κ expressing the strength, and
δ expressing the balance. Because both of the situa-
tions we consider here are balanced (symmetric), we fix
δ = 0.5. As previously with α, we place an exponential
distribution on κ, with the parameter set to 1, to express
weakly neutral beliefs about the value of β. Together, κ,
δ, and γ express neutral beliefs about stores.

To transfer knowledge across stores, we make infer-
ences about the parameters γ and κ at level 4. In the
extended model, the probability of a box with proportion
θ is,

p(θ|γ, κ, δ, α, β) ∝ p(θ|α, β)p(α|γ)p(β|κ, δ)p(γ)p(κ).
(5)

Given some observed mixture proportions θ, we would
like to make inferences about γ and κ. This can be done
using Bayes rule; however, because α and β are both
unknown, we must integrate over possible values,

p(γ, κ|θ, δ) ∝
∫
α

∫
β

p(θ|α, β)p(α|γ)p(β|κ, δ)p(γ)p(κ).

(6)
In this paper, we approximate the integral using a coarse
grid approximation over the values of α, β, γ, and κ.

The import of this extended model is that it allows
us to investigate how experience with one factory affects

beliefs about, and therefore search and prediction in an-
other. For instance, we may ask how experience with a
store that has homogeneous boxes would affect learning
about a new store that has well-mixed boxes, and vice
versa. Figure 3 shows the results of model simulations
for two different presentation orders: even-biased, and
biased-even. The model predicts that the even condition
is more difficult when the biased condition is presented
first. This is because it is a larger coincidence to find
boxes of cookies that happen to be all one kind or the
another, while evenly mixed boxes can happen in a vari-
ety of ways. This coincidence creates a strong bias that
novel experiences with evenly mixed boxes has difficulty
overcoming.

Experiment: The Big Urn
In the following experiment, we will test the two model
predictions discussed above. First, people should be able
to use knowledge about even and biased distributions to
guide their search. In the case where people experience
a biased distribution (as seen in Figure 2, column 1),
their search strategies will converge on drawing once and
then guessing. In the case where they experience an
even distribution, they should converge on a strategy
based simply on guessing. Second, the model predicts
greater difficulty in transferring from the biased to the
even condition than vice versa.

Methods
Participants. Twenty-seven students participated in
this experiment in exchange for partial course credit or
chits.

Procedure. Participants were asked to play a game
on a computer. The object was to guess the color of a
ball drawn from an (virtual) urn filled with red and blue
balls. Participants could score three points for a correct
guess or draw a ball from the urn for the cost of one
point. After guessing the color of a ball from an urn,
correctly or incorrectly, the players were informed about
the mixture of the colored balls in that urn (i.e. “This
urn contained 52% blue balls and 48% red balls.”) and
then shown a new urn.

One game consisted of working through a course of
20 urns with proportions drawn from a beta distribu-
tion with the same parameters. Scores were tracked so
that participants could note their performance and they
were asked to achieve a score that was better than an
“escape” score at the end of a sequence of urns. These
escape scores were derived from the expected value at
the end of the 20 urns using the correct strategy, minus
one-half of a standard deviation: 33 for the biased condi-
tion, 26 for the even condition. Once a participant beat
this escape score, she was transferred to a new condition
in which the mixtures of the urns were generated by a
new distribution. Participants were told that these con-
ditions would be different. The two conditions, biased
(Beta(,1,.1)) and even (Beta(15,15)) were presented in
random order.

We note that by setting the escape score at the ex-
pected value of the optimal strategy minus one-half of
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Figure 4: The probability of guessing in the even condition
(A,B) and biased conditions (C,D) calculated for subjects
and the model. Each graph shows the probability of guessing
during the first turn or after one observation. Both people
and the model tend to guess right away in the even condi-
tion, while both tend to draw once, then guess in the biased
condition.

the standard deviation, it became possible for partici-
pants to escape games by chance. For this reason, par-
ticipants who drew less than three samples total over
the course of at least 60 urns or participants who draw
the maximum sample over 60 urns or more were thrown
out. There lack of any adjustment to their strategies be-
lied a misunderstanding about the nature of the game.
Fourteen participants were removed due to this consid-
eration.

Results

Our first set of analyses focus on people’s search strate-
gies once they have learned the distribution. When the
distribution of the urns is known, the model predicts
different search and prediction strategies (see Figure 2).
For the even condition, the model predicts no draws.
For the biased condition, the model predicts drawing one
ball and guessing whichever color was drawn. When we
analyze people’s behavior in the last half of their first
condition to assess whether people in biased and even
conditions learned different strategies. Figure 4 shows
the probability of guessing on the first chance, and af-
ter drawing. The model predictions shown are based
on a value of ρ = 5, but the effects are robust across a
range of values. The probability of the initial draws are
significantly greater in the biased condition than in the
even condition, as predicted. These results suggest that
people learned which strategy was appropriate for each
condition.
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Figure 5: In agreement with the model, individuals who were
shown the biased condition first took longer to adjust their
strategy in the even condition.

By breaking games up into four stages, we can see
the development of strategies (see Figure 6). Both
groups initially behaved without commitment, guessing
or drawing alternately. Following that initial stage, both
groups shifted more dramatically toward distinct strate-
gies for their first condition. Once subjects achieved
their escape score and switched conditions, they appear
to initially continue to use their first strategy before
shifting toward a more appropriate strategy for their sec-
ond condition.

Our second set of analyses focuses on learning at the
third level of the hierarchy: learning about the process
that is generating urns. In the initial condition, people
should not have strong expectations about the third level
of the hierarchy. However, by the time they arrive in the
second condition, their experience should bias their ex-
pectations. Figure 5 shows that individuals coming into
the even condition second played, on average, a larger
number of games, indicating that it was more difficult
to escape this second condition t(17) = 5.956, p < .001.
One possible explanation for the difference in the mean
number of games played in the second condition is policy
transfer. Subjects simply continued to apply their initial
strategy to the novel condition, and probability dictated
that they were less likely to escape the even condition by
chance. Policy transfer would not, however, explain why
there is an evident shift in strategies after the change
in conditions for both groups as seen in Figure 6, after
the dashed line. Our model indicates that it is more
difficult for subjects to shift from the biased condition,
because it is a much larger coincidence that urns would
be of mostly one color than evenly mixed. This provides
a more accurate explanation of the data.
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Figure 6: Development of strategies over the course of the experiment. Initially, all participants started out roughly even
between drawing and guessing after zero and one observation. At the end of the first game, people had learned the predicted
strategy for each condition. After participants switched conditions, they initially reflect the strategy they started with, but
eventually converge toward the strategy predicted for that condition.

Discussion

Everyday reasoning requires systematic searches for in-
formation in novel situations, and prior experience plays
a critical role in guiding this process. We have presented
a computational framework for modeling how abstract
knowledge guides search in novel situations. In our ex-
periment, we showed that people use abstract knowledge
about distributions to guide search and prediction about
a simple guessing game scenario. Further, the results
suggest that learning about some situations hinders de-
velopment of appropriate search strategies in other situ-
ations.

Much research has been dedicated to the question of
how people make decisions in uncertain environments.
Research on decision making in highly stochastic envi-
ronments has suggested that people may not tend to
choose options that maximize rewards. We believe a
more interesting avenue lies not in unstructured envi-
ronments, but in structured scenarios like the ones we
face everyday. Searching for a reference on the internet,
for instance, goes on in a much more structured environ-
ment than that which is captured by bandit problems,
and it is in these structured environments that people
succeed.

We believe that our approach using hierarchically
structured knowledge to guide search and prediction
presents an interesting step toward capturing people’s
abilities to transfer knowledge across situations to guide
search. However, important issues remain for modeling
real-world behavior. The knowledge that we have mod-
eled is much simpler than that which guides everyday
searches. Similarly, our approach to planning requires
that we have full knowledge about possible states and

associated rewards in the world. These represent two
important challenges for future work, but we are hope-
ful that our work will provide a step in this direction.
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