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Abstract

Human learners have ability to adopt appropriate learning approaches depending
on constraints such as prior on the hypothesis, urgency of decision, and drift of the
environment. However, existing learning models are typically considered individu-
ally rather than in relation to one and other. To build agents that have the ability to
move between different modes of learning over time, it is important to understand
how learning models are related as points in a broader space of possibilities. We
introduce a mathematical framework, Generalized Belief Transport (GBT), that
unifies and generalizes prior models, including Bayesian inference, cooperative
communication and classification, as parameterizations of three learning constraints
within Unbalanced Optimal Transport (UOT). We visualize the space of learning
models encoded by GBT as a cube which includes classic learning models as
special points. We derive critical properties of this parameterized space including
proving continuity and differentiability which is the basis for model interpolation,
and study limiting behavior of the parameters, which allows attaching learning
models on the boundaries. Moreover, we investigate the long-run behavior of
GBT, explore convergence properties of models in GBT mathematical and compu-
tationally, document the ability to learn in the presence of distribution drift, and
formulate conjectures about general behavior. We conclude with open questions
and implications for more unified models of learning.

Learning and inference are subject to internal and external constraints. Internal constraints include
the availability of relevant prior knowledge. External constraints include the availability of time to
accumulate evidence versus the need make the best decision now or environmental non-stationarity.
Standard models of machine learning tend to view different constraints as different problems, which
impedes development of unified learning agents.

These internal and external constraints map onto classic dichotomies in machine learning. Availability
of prior knowledge maps onto the Frequentist-Bayesian dichotomy in which the latter uses prior
knowledge as a constraint on posterior beliefs, while the former does not. Within Bayesian theory, a
classic debate pertains to uninformative, or minimally informative, settings of priors [Jeffreys, 1946,
Robert et al., 2009]. Availability of time to accumulate evidence informs the use of generative versus
discriminative approaches [Ng and Jordan, 2001], and static or drift/dynamic models [Dagum et al.,
1992, Murphy, 2002]. Combining constraints on probability of beliefs and costs of data models
cooperative communication [Wang et al., 2020b].

Learning agents must interpolate between modes of reasoning as necessary given the constraints of
the moment. Imagine observing an agent behaving in an environment. As an observer, one may wish
to learn about the environment from the agent’s actions. However, any inferences depend on one’s
model of the agent and their constraints. How is the agent updating their beliefs? Do they have stable
goals, or are they changing over time? Perhaps the agent is selecting actions to communicate what
they know? In order to draw inferences over these possibilities, one must parameterize the space,
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ideally in such a way one could optimize over the possibilities. Indeed, in order to implement these
possibilities, the agent themself must parameterize the space in order to interpolate between classic
dichotomies such as Bayesian and frequentist, static and dynamic environments, and helpful versus
neutral agent, given constraints.

We introduce Generalized Belief Transport (GBT), based on Unbalanced Optimal Transport (Sec. 1),
which paramterizes and interpolates between known reasoning modes (Sec. 2.2), with four major
contributions. First, we prove continuity in the parameterization and differentiability on the interior
of the parameter space (Sec. 2.1). Second, we analyze the behavior under variations in the parameter
space (Sec. 2.3). Third, we study sequential learning, where learners may (not) track the empiri-
cally observed data frequencies in (Sec. 3). Fourth, we investigate predictive performance under
environmental drift (Sec. 4).

Notations. R≥0 denotes the non-negative reals. Vector 1 = (1, . . . , 1). The i-th component of vector
v is v(i). P(A) is the set of probability distributions over A. For a matrix M , Mij represents its
(i, j)-th entry, M(i,_) denotes its i-th row, and M(_,j) denotes its j-th column. Probability is P( · ).

1 Learning as a problem of unbalanced optimal transport

Consider a general learning setting: an agent, which we call a learner, updates their belief about the
world based on observed data subject to constraints. There is a finite set D = {d1, . . . , dn} of all
possible data, that defines the interface between the learner and the world. The world is defined by a
true hypothesis h∗, whose meaning is captured by a probability mapping P(d|h∗) onto observable
data. For instance, the world can either be the environment in classic Bayesian inference [Murphy,
2012] or a teacher in cooperative communication [Wang et al., 2020b].

A learner is equipped with a set of hypotheses H = {h1, . . . , hm} which may NOT contain h∗;
an initial belief on the hypotheses set, denoted by θ0 ∈ P(H); and a non-negative cost matrix
C = (Cij)m×n, where Cij measures the underlying cost of mapping di into hj 1. The cost matrix
can be derived from other matrices that record the relation between D and H, such as likelihood
matrices in classic Bayesian inference or consistency matrices in cooperative communication (see
details in Section 2.2).This setting reflects an agent’s learning constraints: pre-selected hypotheses,
and the relations between them and the communication interface (data set).

A learner observes data in sequence. At round k, the learner observes a data dk that is sampled from
D by the world according to P(d|h∗). Then the learner updates their beliefs over H from θk−1 to
θk through a learning scheme, where θk−1, θk ∈ P(H). For instance, in Bayesian inference, the
learning scheme is defined by Bayes rule; while in discriminative models, the learning scheme is
prescribed by a code book.

The learner transforms the observed data into a belief on hypotheses h ∈ H with a minimal cost,
subject to appropriate constraints, with the goal of learning the exact map P(d|h∗). We can naturally
cast this learning problem as Unbalanced Optimal Transport.

1.1 Unbalanced Optimal Transport

Unbalanced Optimal Transport (UOT), introduced by Liero et al. [2018], is a generalization of
(entropic) Optimal Transport [Villani, 2008, Cuturi, 2013, Peyré and Cuturi, 2019], that relaxes the
marginal constraints. Formally, for non-negative scalar parameters ϵ = (ϵP , ϵη, ϵθ), the UOT plan is,

P ϵ(C, η, θ) = argmin
P∈(R≥0)n×m

{⟨C,P ⟩ − ϵPH(P ) + ϵηKL(P1|η) + ϵθKL(PT1|θ)}. (1)

Here, ⟨C,P ⟩ =
∑

i,j CijPij is the inner product between C and P , H(P ) = −
∑

ij Pij(logPij−1)

is the entropy of P , and KL(a|b) :=
∑

i(ai log(ai/bi)−ai+ bi) is the Kullback–Leibler divergence
between vectors. It is shown in Chizat et al. [2018] that UOT plans can be solved efficiently via
Algorithm 1 : Given a cost C, P ϵ can be obtained by applying (η, θ, ϵ)-unbalanced Sinkhorn scaling
on Kϵ := e

− 1
ϵP

C
= (e

− 1
ϵP

Cij )m×n, with convergence rate Õ(mn
ϵP

) [Pham et al., 2020].

1To guarantee the hypotheses are distinguishable, we assume that C does not contain two columns that are
only differ by an additive scalar.
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Proposition 1. The UOT problem with cost matrix C, marginals θ, η and parameters ϵ = (ϵP , ϵη, ϵθ)
generates the same UOT plan as the UOT problem with tC, θ, η, tϵ = (tϵP , tϵη, tϵθ) for any
t ∈ (0,∞). Therefore, the analysis on ϵ and tϵ are the same for general cost C.

Thus a positive common factor on C, ϵP , ϵη, ϵθ does not affect the solution of Eq. (1). Therefore, for
the later analysis, we fix ϵP = 1 unless otherwise stated.

Framework: Generalized Belief Transport (GBT). Learning, efficiently transport one’s belief with
constraints, is naturally a UOT problem, i.e. a Generalized Belief Transport. Each round, a learner,
defined by a choice of ϵ = (ϵP , ϵη, ϵθ), updates their beliefs as follows. Let ηk−1, θk−1 be the learner’s
estimations of the data distribution and the belief over hypothesesH after round k − 1, respectively.
At round k, the learner first improves their estimation of the mapping between D and H, denoted
by Mk, through solving the UOT plan Eq. (1) with (C, ηk−1, θk−1), i.e. Mk = P ϵ(C, ηk−1, θk−1).
Then with data observation dk, the learner updates their beliefs over H using corresponding row
of Mk, i.e. suppose dk = di for some di ∈ D, the learner’s belief θk is defined to be the row
normalization of the i-th row of Mk. Finally, the learner updates their data distribution to ηk by
increment of the i-th element of ηk−1, see Algorithm 2.

Algorithm 1 Unbalanced Sinkhorn Scaling

input: C, θ, η, ϵ = (ϵP , ϵη, ϵθ), N stopping
condition ω
output: P ϵ(C, η, θ)
initialize: K = exp(−ϵPC), v(0) = 1m

while k < N and not ω do

u(k) ←
( η

Kv(k−1)

) ϵη
ϵη+ϵP ,

v(k) ←
(

θ

KTu(k)

) ϵθ
ϵθ+ϵP

end while
P ϵ(C, η, θ) = diag(u)Kdiag(v)

Algorithm 2 Generalized Belief Transport

input: C, θ0, η0, h∗, N , data sampler τ
based on P(d|h∗), stopping condition ω
output: M , θ
initialize: k ← 1
while k < N and not ω(θ) do
M ← P ϵ(C, ηk−1, θk−1)

get data di sampled from τ
ηk ← update(ηk−1, d

i) via update rule
v←M(i,_)
θk ← v/

∑
h∈H v(h)

k ← k + 1
end while

2 Generalized Belief Transport

Many learning models—including Bayesian inference, Frequentist inference, Cooperative learning,
and Discriminative learning—are unified under our GBT framework under choice of ϵ. In this section,
we focus on the single-round behavior of the GBT model, i.e., given a pair of marginals (θ, η), how
different learners update beliefs with a single data observation. We first visualize the entire learner
set as a cube (in terms of parameters), see Figure 1. Then, we study the topological properties of the
learner set through continuous deformations of parameters ϵ. In particular, we show that existing
models including Bayesian inference, cooperative inference and discriminative learning are learners
with parameters (1, 0,∞), (1,∞,∞) and (0,∞,∞) respectively in our UOT framework.

2.1 The parameter space of GBT model

The space of learners in GBT are parameterized by three regularizers for the underlying UOT
problem (1): ϵP , ϵη and ϵθ, each ranges in [0,∞). Therefore, the constraint space for GBT is
R3

≥0, with the standard topology. When C, θ and η are fixed (assume η ∈ Rm
>0), the map ϵ =

(ϵP , ϵη, ϵθ) 7→ (P ϵ) bears continuous properties:

Proposition 2. 2 The UOT plan P in Equation (1), as a function of ϵ, is continuous in (0,∞)×[0,∞)2.
Furthermore, P is differentiable with respect to ϵ in the interior of its domain R3

≥0.

Continuity on ϵ provides the basis for interpolation between different learning agents. The proof of
Proposition 2 also implies the continuity on η and θ. Further, towards the boundaries of the parameter
space (where theories like Bayesian, Cooperative Communication live in), we show:

2Proofs of all claims are included in the Supplementary Materials.
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Proposition 3. Let sP , sη , sθ ≥ 0 be arbitrary finite numbers, the following holds:

(1) The limit of P ϵ exists as ϵ approaches (∞, sη, sθ). In fact, limϵ→(∞,sη,sθ) P
ϵ
ij = 1 for all i, j.

(2) As ϵ→ (sP ,∞, sθ), P ϵ converges to the solution to

min⟨C,P ⟩ − sPH(P ) + sθKL(PT1|θ), with constraint P1 = η,

(3) Similarly, as ϵ→ (sP , sη,∞), P ϵ converges to the solution to

min⟨C,P ⟩ − sPH(P ) + sηKL(P1|η), with constraint PT1 = θ.

(4) And when ϵ→ (sP ,∞,∞), the matrix P ϵ converges to the EOT solution:

min⟨C,P ⟩ − sPH(P ), with constraints PT1 = θ and P1 = η.

(5) When ϵ → (∞,∞, sθ), (∞, sη,∞) or (∞,∞,∞), the limit does not exist, but the directional
limits can be calculated.

Figure 1: The parameter space S of GBT. Parameters
ϵ = (ϵP , ϵη, ϵθ) can take the value ∞, rendering the
corresponding regularization to a strict constraint. The
two dashed edges with ϵP = ∞ are not generally well-
defined since the limits do not exist. The vertices corre-
sponding to θ ⊗ η, Frequentist (η ⊗ 1) and 1 ⊗ θ are
the limits taken along the vertical edges. Given (C, θ, η)
as shown in the left corner, each colored map plots each
GBT learner (differ by constraints)’s estimation of the
mapping between hypotheses and data (UOT plan).

The parameter space for GBT with its bound-
aries can be visualized in Fig. 1. Propo-
sition 3 implies that the parameter space is
S = [0,∞]3\({(∞,∞, x) : x ∈ [0,∞]} ∪
{(∞, x,∞) : x ∈ [0,∞]}). In Fig. 1, segment
[0,∞) is mapped to [0, 1) by sigmoid(log(x)).
Then boundaries are added to the image cube
[0, 1)3. The dashed lines on top of the cube
indicates limits that do not exist.

2.2 Special points in the parameter space

Bayesian Inference. Given observed data, a
Bayesian learner (BI) [Murphy, 2012] derives
posterior belief P(h|d) based on prior belief
P(h) and likelihood matrix P(d|h), according
to the Bayes rule. Intuitively, due to soft time
constraint (ϵP = 1), a Bayesian learner is a
generative agent who puts a hard internal con-
straint on their prior belief (ϵθ =∞), and omits
the estimated data distribution η in the learning
process, (ϵη = 0).

Corollary 4. Consider a UOT problem with
cost C = − logP(d|h), marginals θ = P(h), η ∈ P(D). The optimal UOT plan P (1,ϵη,ϵθ) converges
to the posterior P(h|d) as ϵη → 0 and ϵθ →∞. Thus, Bayesian inference is a special case of GBT
with ϵ = (1, 0,∞).

Frequentist Inference. A frequentist updates their belief from data observations by increasing the
corresponding frequencies of datum. Intuitively, a frequentist is an agent who puts a hard constraint
on the data distribution η (ϵη = ∞), and omits prior knowledge θ (ϵθ = 0) in a learning process
without time constraint (ϵP =∞). Formally we show:

Corollary 5. Consider a UOT problem with θ ∈ P(H), η = P(d). The optimal UOT plan P (ϵP ,∞,0)

converges to η ⊗ 1 as ϵP →∞. Frequentist Inference is a special case of GBT with ϵ = (∞,∞, 0).

Cooperative Communication. Two cooperative agents, a teacher and a learner, are considered in
Yang et al. [2018], Wang et al. [2020b], Shafto et al. [2021]. Cooperative learners (CI) draw inferences
about hypotheses based on which data would be most effective for the teacher to choose Given a
data observation, a cooperative learner derives an optimal plan L = P(H,D) based on a prior belief
P(h), a shared data distribution P(d) and a matrix M specifies the consistency between data and
hypotheses (such as Mij records the co-occurrence of di and hj). Intuitively, a cooperative learner is
also a generative agent who puts hard constraints on both data and hypotheses (ϵη =∞, ϵθ =∞),
and aims to align with the true belief asymptotically, (ϵP = 1). Thus we show:
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Corollary 6. Let cost C = − logM , marginals θ = P(h) and η = P(d). The optimal UOT plan
P (1,ϵη,ϵθ) converges to the optimal plan L as ϵη → ∞ and ϵθ → ∞. Cooperative Inference is a
special case of GBT with ϵ = (1,∞,∞), which is exactly entropic Optimal Transport [Cuturi, 2013].

Discriminative learning. A discriminative learner decodes an uncertain, possibly noise corrupted,
encoded message, which is a natural bridge to information theory [Cover, 1999, Wang et al., 2020b].
A discriminative learner builds an optimal map to hypothesesH conditioned on observed dataD. The
map is perfect when, for all messages, encodings are uniquely and correctly decoded. Intuitively, a
discriminative learner aims to quickly build a deterministic code book (implies ϵP = 0) that matches
the marginals onH and D. We show that discriminative learner is GBT with ϵ = (0,∞,∞):

Corollary 7. Consider a UOT problem with cost C = − logP(d, h), m = n, and marginals θ = η
are uniform. The optimal UOT plan P (ϵP ,ϵη,ϵθ) approaches to a diagonal matrix as ϵη, ϵθ →∞ and
ϵP → 0. In particular, discriminative learner is a special case of GBT with ϵ = (0,∞,∞), which is
exactly classical Optimal Transport [Villani, 2008].

Many other interesting models are unified under GBT framework as well. GBT with ϵ = (0,∞, 0)
denotes Row Greedy learner which is widely used in Reinforcement learning community [Sutton
and Barto, 2018]; ϵ = (∞,∞,∞) yields η ⊗ θ which is independent coupling used in χ2 [Fienberg
et al., 1970]; ϵ = (ϵP , ϵθ,∞) is used for adaptive color transfer studied in [Rabin et al., 2014]; and
ϵ = (0, ϵθ, ϵη) is UOT without entropy regularizer developed in [Chapel et al., 2021]. Other points in
the GBT parameter space are also of likely interest, past or future.

2.3 General properties on the transportation plans

The general GBT framework builds a connection between the above theories, and the behavior of
theory varies according to the change of parameters. In particular, each factor of ϵ = (ϵP , ϵη, ϵθ)
expresses different constraints of the learner. Given (C, θ, η) as shown in the top-left corner of Fig. 1,
we plot each learner’s UOT plan with darker color representing larger elements.

ϵP controls a learner’s learning horizon. When ϵP → 0, a learner’s UOT plan is concentrated on a
clear leading diagonal which allows them to make fast decisions. This corresponding to agents who
are under the time pressure of making immediate decision, i.e. discriminative learner, or row greedy
learner on the bottom of the cube (Fig. 1). Most of the time, one datum is enough to identify the
true hypothesis and convergence is achieved within every data observation. When ϵP →∞, GBT
converges to a reticent learner, such as learners on the top of the cube. Data do not constrain the true
hypothesis, and learners draw their conclusions independent of the data. In between, GBT provides
a generative (probabilistic) learner. When ϵP = 1, we have Bayesian learner and Cooperative
learner, for whom data accumulate to identify the true hypothesis in a manner broadly consistent with
probabilistic inference, and consistency is asymptotic.

ϵη controls a learner’s knowledge on the data distribution η. When ϵη → ∞, GBT converges to
a learner who is aware of the data distribution and reasons about the observed data according to
the probabilities/costs of possible outcomes. Examples include the Discriminative and Cooperative
learners on the front of the cube. When ϵη → 0, GBT converges to a learner who updates their belief
without taking η into consideration, such as Bayesian learners on the back of the cube, and the Tyrant
who does not care about data nor cost and is impossible to be changed by anybody.

ϵθ controls the strength of the learner’s prior knowledge. When ϵθ → 0, GBT converges to learners
who utilizes no prior knowledge. Hence, they do NOT maintain beliefs over H, and draws their
conclusions purely on the data distribution, such as a Frequentist learner on the left of the cube. When
ϵθ →∞, GBT converges to a learner who enforces a strict prior such as Bayesian, Cooperative and
Discriminative learners on the right of the cube. In particular, we show that:

Proposition 8. In GBT with ϵθ =∞, cost C and current belief θ. The learner updates θ with UOT
plan in the same way as applying Bayes rule with likelihood from P ϵ(C, η, θ), and prior θ.

3 Sequential GBT - Static

The sequential GBT captures the asymptotic behavior of a learning problem (C, θ0, h
∗). Static world

where there exists a fixed true hypotheses h∗ is considered in this section. Data is sampled from
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η = P(d|h∗) (not necessarily related to some h ∈ H). Then the learner follows GBT with cost C,
and parameter ϵ, starts with a prior θ0, then in each round k, applies GBT with ηk−1 and θk−1 to
generate θk.

We investigate two cases. In the Preliminary sequential model (PS), we assume ηk = η for all k. In
practice, often a learner does not have access η. Instead, in each round the learner may choose to use
the current observed data distribution ηk(d) as an estimation of η, Thus we study the Real sequential
model (RS) where ηk

a.s.−−→ η.

In statistics, a model is said to be consistent when, for every fixed hypothesis h ∈ H, the model’s
belief θ over the hypotheses set H converges to δh in probability as more data are sampled from
η = P(d|h). Such consistency has been well studied for Bayesian Inference since Bernstein and von
Mises and Doob [Doob, 1949], and recently demonstrated for Cooperative Communication [Wang
et al., 2020a]. However, the challenge arises when one tries to learn a h∗ that is not contained in the
pre-selected hypothesis spaceH. It is not clear which h ∈ H is the ‘correct’ target to converge to.

In this section, we demonstrate GBT’s ability of learning new hypothesis. Analogize to consistency,
the properties are stated directly in the language of posterior sequence (Θk)

∞
k=1 as random variables,

focusing on whether the sequence converges (and in which sense), and how conclusive (how likely to
a stable new hypothesis is learned) the sequence is.

For a learning problem (C, θ0, h
∗), results in this section are organized based on different ϵθ values.

Conclusive and Bayesian-style: ϵθ =∞. These learners are located on the right side of Cube Fig. 1.
Many well-studied learners are in this class: Bayesian, Cooperative, Discriminative, Row Greedy etc.
According to Prop 8, learners in this class perform “Bayesian” style learning.

When ϵη = 0, i.e. the learners who update their belief without considering data distribution, (PS) and
(RS) are essentially the same. The following holds:

Theorem 9 ([Doob, 1949],[Wang et al., 2020a]). In GBT sequential model (both (PS) and (RS)) with
ϵ = (ϵP , 0,∞) where ϵP ∈ (0,∞), the sequence Θk converges to some δh almost surely, h is the
closest column of e−C/ϵP to η in the sense of KL-divergence.

When ϵη =∞, the models (PS) and (RS) present slightly different behaviors.

Theorem 10 (PS). When ϵη = ϵθ = ∞, for the PS problem belief random variables of a GBT
learner (Θk)k∈N converge to the random variable Y in probability, where Y =

∑
h∈H θ0(h)δh and

Y is supported on {δh}h∈H with P(Y = δh) = θ0(h) for ϵη = ϵθ =∞ and ϵP ∈ (0,∞).

Corollary 11. Given a fixed data sequence di sampled from η, if θk converges to δhj , then the j-th
column of Mk converges to η.

Thus a GBT learner, with access to the data distribution and using strict marginal constraints,
converges to the true hypothesis mapping η with probability 1. Moreover, the probability of which
h ∈ H is shaped into η is determined by their prior θ0. That is, GBT learners converge to the truth by
reforming one of their original hypotheses into the true hypothesis.

Proposition 12. When ϵη = ϵθ =∞, for the (RS) problem, the belief random variables of a GBT
learner (Θk)k∈N satisfies that for any s > 0, lim

k→∞

∑
h∈H

P(Θ(h) > 1−s) = 1. As a consequence, Mk

as the transport plan has a dominant column (hj) with total weights > 1−s, and |(Mk)ij−ηk(i)| < s.

In fact, as long as the sequence of ηk as random variables converges to η in probability, the above
proposition holds. The limit lim

k→∞

∑
h∈H

P(Θ(h) > 1− s) measures how conclusive the model is.

In contrast with standard Bayesian or other inductive learners, Proposition 12 shows that a GBT learner
is able to learn any hypothesis mapping η = P(d|h∗) up to a given threshold s with probability 1.
In addition to unifying disparate models of learning, GBT enables a fundamentally more powerful
approach to learning by empirically monitoring the data marginal.

Fig. 2 illustrates convergence over learning problems and episodes. In each bar, we sample 100
learning problems (C, θ0, h∗) from Dirichlet distribution with hyperparameters the vector 1. Then
we sample 1000 data sequences (episodes) of maximal length N = 10000. The learner learns with
Algo. 2 where the stopping condition ω is set to be maxh∈H θ(h) > 1 − s with s = 0.001. The

6



Figure 2: Evidence of general consistency: we plot the percentage of episodes that reaches a threshold (0.999)
by round number (in colors of the bars). Each bar represents a size of matrix, for each bar 100 matrices were
randomly sampled, and 1000 rounds were simulated per matrix. “exact” means learner uses ηk = η, (PS),
“update” means learner uses statistics on current data in the episode (RS). “uot” takes ϵ = (1, 40, 40) and “ot”
comes with exact and ϵ = (1,∞,∞).

y-axis in the plots represents the percentage of total episode converged. The color indicates in how
many rounds the episode converges. For instance, in the bar corresponding to ‘10× 10_update_uot’,
with 10 data points (yellow portion), about 50% episodes satisfy the stopping condition.

The first plot shows results for 10×10 and 5×3 matrices. The second plot shows results for rectangular
matrices of dimension m× 10 with m ranges in [5, 10, 25, 50, 100]. The third plot shows results for
square matrices of dimension m×m with m ranges in [10, 25, 50, 100]. Here ‘exact’ and ‘update’
indicate the problem is (PS) or (RS), respectively. For parameters, uot represents the parameter
choice (ϵP = 1, ϵθ = ϵη = 40) vs. ot represents the parameter choice (ϵP = 1, ϵθ = ϵη =∞).

The first plots demonstrates that learners that do not have access to the true hypothesis (empirically
builds estimation of η) learn faster than learners who have full access. The second plot indicates with
a fixed number of hypotheses, learning is faster when the dimension of D increases. The third plot
shows that the GBT learner scales well with the dimension of the problem.

Figure 3: Left: Behavior of models spanning the line segment between BI and CI. With ϵP = 1 and ϵθ = ∞,
when ϵη varies from 0 to ∞, the theory changes from BI to CI. Each bar graphs the Monte-Carlo result of 400,000
teaching sequences, we empirically observe that the coefficients a(h) of the limit in terms of

∑
h∈H a(h)δh

changes from BI to CI continuously from δ(h3) by Bernstein-von Mises to θ0(h) by Theorem 10. Right: the
Euclidean distances of each coefficient a(h) to BI result (blue crosses), and to CI result (orange dots).

Then we study the learners that interpolate between Bayesian and Cooperative learners (located on
the line connecting CI and BI in Fig 1). Consider a fixed learning problem (C, θ0, h

∗). Consistency
of Bayesian inference states that asymptotically, the learner Bayesian converges to a particular
hypothesis hb ∈ H almost surely where hb is the hypothesis closest to h∗ under KL divergence.
Theorem 10 indicates that a GBT cooperative learner modifies one of the hypotheses into h∗ in
probability 1. The probability of hj converges to h∗ is determined by θ0(h

j).

In Fig. 3, we study the asymptotic behavior of the learners corresponding to ϵ = (1, ϵη,∞), with
ϵη ∈ {0, 0.02, 0.2, 0.5, 1, 2, 5, 50,∞}. We sample a learning problem with a dimension 5× 5 from
Dirichlet distribution with hyperparameters the vector 1. Each learner ϵ = (1, ϵη,∞) is equipped
with a fixed C, θ0 and ηk = η for all k. We run 400, 000 learning episodes per learner, and plot
their convergence summary in the bar graph. A continuous transition from a Bayesian learner to
a cooperative learner can be empirically observed: the coefficients a(h) of the limit in terms of∑

h∈H a(h)δh changes from δ(h3) by Bernstein-von Mises to θ0(h) by Theorem 10.

From the previous empirical results, we conclude the following conjecture:
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Conjecture 13. When ϵ = (ϵP , ϵη,∞), where ϵP ∈ (0,∞), the sequence of posteriors Θk from
generic C, η, θ and ϵ as random variables satisfy lim

k→∞

∑
h∈H

P(|Θk(h)− 1|<e) = 1 for any e > 0.

Further, we pick out those episodes with θN (h) > 0.95, plot the values EθN (h)>0.95[ln θk(h) −
ln(1− θk(h))] for each h against k in Fig. 4. Near linear relations are observed away from the first
several rounds and before the values reaches the precision threshold. These are empirical estimates of
the rate of convergence.

Figure 4: Top: For a learning problem C, behaviors of 9 different learners with ϵP = 1, ϵθ = ∞ and various ϵη
(denoted in figure) on conclusion distributions, a(h) in bar graph, plots below bars are estimated convergence
rates E ln(θk(h)/(1− θk(h))) averaged on episodes converging to h, one curve per hypothesis.

Inconclusive and independent: ϵθ = 0. The following holds for both (PS) and (RS):

Proposition 14. For ϵ = (ϵP , ϵη, 0) with ϵP ∈ (0,∞), as ηk → η almost surely, the sequence
Θk of posteriors as a sequence of random variables converges in probability to variable Θ, where
P(Θ = vi) = η(i) and vi = P(i,_)/

(∑m
j=1 Pij

)
and P = P ϵ(C, η, θ). Therefore, for any s > 0,

limk→∞
∑

h∈H P(|Θk(h)− 1| < s) = 0 for generic (for all but in a closed subset) cost C and η, θ.

With ϵθ = 0, the constraint on column-sum (ϵη-term) fails to affect the transport plan, thus the Θk’s
in the sequence are independent from each other, in contrast that in all other cases the adjacent ones
are correlated via a nondegenerate transition distribution. The independence makes the sequence
of posterior-samples in one episode behave totally random, thus rarely converge as points in P(H).
Furthermore, when consider the natural coupling (Θk−1,Θk) from Markov transition measure for
ϵθ = 0 (which is independent), E

(
|Θk−1 −Θk|2

)
converges to the variance V ar(η). In contrast, for

ϵθ =∞, E
(
|Θk−1 −Θk|2

)
converges to 0 if Conj. 13 holds.

ϵθ ∈ (0,∞): partially conclusive. From Conj. 13 and Prop. 14, together with the continuity of the
transition distribution on ϵ, we conjecture the following continuity on conclusiveness:

Conjecture 15. For both (PS) and (RS) models, when ϵ = (ϵP , ϵη, ϵθ) with ϵP , ϵθ ∈ (0,∞), the pos-
terior sequence Θk from generated from generic C, η, θ and ϵ satisfy that limk→∞

∑
h∈H P(|Θk(h)−

1| < s) = L exists, and L ∈ (0, 1), for any s > 0.

An Exploration on Interpolation It is popular in the state of art machine learning models that an
agent learns probabilistically, but makes decisions greedily. This heuristic represents a path where a
big leap on the cube was taken at the last step. An interesting question is under what circumstances
this is optimal, what are the trade-offs, and under what conditions smoother trajectories are preferable.
Instead of the giant leap, small steps along two paths are explored in the cube.

Our exploration takes a slightly different situation where the last step is replaced by a discriminative
learning strategy ϵ = (0,∞,∞). We choose a matrix randomly of shape 4×4 (see Supplementary for
detail), set total steps or total data points taught N = 10, and uniform prior θ ∈ P(H) on hypotheses.
Three learners are postulated: Blue performs Bayesian in first 9 steps and Discriminative in the last.
Orange and Red follows two different interpolation curves with the same endpoints on the cube drawn
in Fig. 5a. The curves are line and parabola segments on the cube sides.

Results of the three learners are shown in Fig. 5b. We sample h∗ uniformly from the 4 columns of (the
column-normalized) M , 40000 repeats for each learner. Conclusiveness (minimal l1 distance between
posterior and a 1-hot vector) and posterior entropy are plotted as histograms. The results show that the
smoother path may lead to a more conclusive posterior. Numerical results: Conclusiveness of Blue:
mean 0.9406, standard deviation 0.1300. Conclusiveness of Orange: mean 0.9964, standard deviation
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0.0327. Conclusiveness of Red: mean 0.9834, standard deviation 0.0676. Furthermore, compared
with a sudden jump, gradual interpolations have lower entropy. Numerical results: entropy of Blue:
mean 0.1261, standard deviation 0.2435, entropy of Orange: mean 0.0079, standard deviation 0.0629;
entropy of Red: mean 0.0388, standard deviation 0.1336.

(a) Three learners (b) Posteriors and Entropy distributions
Figure 5: (a): Baseline Blue and two learners Orange and Red following corresponding interpolation paths. (b):
Results of the three learners over 40000 repeats. Top: conclusiveness, the frequency distribution of maximal
posterior component. Bottom: entropy distribution.

From this experiment, in the 10-sample learning, two smoother learners behave more conclusive
in their posterior with smaller posterior entropy. Meanwhile, we still know very little about the
interpolation behavior, such as which path works better, how to distribute vertices on the curve, etc.

4 Sequential GBT - Dynamic

While static models are frequently studied, in many cases world changes dynamically. In this section,
we take a first step in this direction by exploring the sequential behaviors of GBT learners assuming
the world changes periodically. Demonstrate that unlike existing learners, GBT learner is capable of
detecting the non-static property of a given problem.

Let integer p > 0 be the period, given a set of true hypotheses distributions η⃗ = {η0, η1, . . . , ηp−1} ⊆
P(D), datum dt is sampled from dk%p where k%p represents the remainder of k under division by p.
Proposition 16. For a Bayesian learner, the posterior sequence {Θi} converges almost surely to the
average of true hypotheses η = 1

p

∑p−1
k=0 ηk.

For random variables of learner’s posterior sequence (Θk)
∞
k=1, group them by period, we denote

Θ⃗t := (Θtp,Θtp+1, . . . ,Θ(t+1)p−1). Here k represents the time step, t denotes the period index.

Proposition 17. For ϵ in the interior of the cube, for (PS) problem, the sequence {Θ⃗t} (random vari-
ables overP(H)p) form a time-homogeneous Markov chain. For (RS) problem, {(Θ⃗t,

1
pt

∑p−1
k=0 tηk)},

the random variable sequence producing samples {(θ⃗t, 1
pt

∑pt−1
k=0 δdk

)}, forms a Markov chain.

Next we compare different learners’ behavior empirically for (RS) problem. For visualization, M is
taken of shape 3× 3, thus P(D) and P(H) are both of dimension 2. If the Markov chain defined in
Prop. 17 stabilizes, E[Θk] will be periodic, matching the pattern of Θ⃗t. In fact, the period could be p,
or a factor of p, or stabilizes where the period can be considered as 1. Thus we analyze η⃗ in P(D)
and E[Θk] in P(H), obtained from Monte-Carlo sampling along certain amount of episodes.

Fig. 6 (a) assume the true hypothesis travel along the triangular path connecting the 3 columns of
M (shown in blue crosses). We found that GBT learners with ϵ in the interior of the cube (general
GBT) produce a posterior path of period p, while the posteriors of Bayesian and SCBI learners tend
to converge (Fig. 6 (b-e)). Thus a general GBT learner can naturally detect the periodicity of the
world. We simulate up to k = 400 steps and 10240 repeats for each learner.

Moreover, we discovered that a general GBT learner’s posteriors converge to a curve whose area is
proportional to the area of the path of true hypotheses. In Fig. 7, as the path of true hypotheses vary
by radius and shapes, the ratio (shown as slope) between both areas tends to be the same, it is 0.1620
in (a) and 0.1616 in (d), which suggests that this ratio is independent from the path of η⃗.
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Figure 6: (a). Setup: each dot represents an ηk; data are sampled along the dots from red to yellow of period 18,
M has 3 columns represented by the blue crosses. (b-d). Bayesian, general GBT, SCBI learners, resp., blue
curve shows E[Θk] and red crosses are E[Θ⃗t] (mean of 18 consecutive E[Θk]’s). (e). for 6 different learners
(shown in colors), plot (1) the averaged distance between E[Θk] and its center v.s. number of periods, in solid
lines and left y-ticks, and (2) the step-length of E[Θ⃗t] between consecutive periods in dash-dots and right y-ticks.

Figure 7: Behavior of a GBT learner with ϵ = (1, 10, 10) on two different paths of η⃗ with p = 20, tested in
300 steps and 10240 episodes. M is fixed and represented by the red dots. Learner’s posteriors form roughly
periodic paths, small panels on corners of (a, d), plot path of η⃗ and posterior paths, ratio between their enclosed
areas are shown in yellow to blue dots. (b, c) shows the 20 concentric similar paths that η⃗ follow. Colors are
matched between paths and corresponding area ratios.

Related Work. Prior work defines and outlines basic properties of Unbalanced Optimal Transport
[Liero et al., 2018, Chizat et al., 2018, Pham et al., 2020]. Bayesian approaches are prominent
in machine learning [Murphy, 2012] and beyond [Jaynes, 2003, Gelman et al., 1995]. There is
also research on cooperative learning [Wang et al., 2019, 2020b,a] see also [Liu et al., 2021, Yuan
et al., 2021, Zhu, 2015, Liu et al., 2017, Shafto and Goodman, 2008, Shafto et al., 2014, Frank and
Goodman, 2012, Goodman and Frank, 2016, Fisac et al., 2017, Ho et al., 2018, Laskey et al., 2017].
Discriminative learning is the reciprocal problem in which one sees data and asks which hypothesis
best explains it [Ng and Jordan, 2001, Mandler, 1980]. We are unaware of any work that attempts to
unify and analyze the general problem of learning in which each of these are instances.

5 Conclusions

We have introduced Generalized Belief Transport (GBT), which unifies and parameterizes classic
instances of learning including Bayesian inference, Cooperative Inference, and Discrimination,
as Unbalanced Optimal Transport (UOT). We show that each instance is a point in a continuous,
differentiable on the interior, 3-dimensional space defined by the regularization parameters of UOT.
Moreover, to demonstrate general GBT’s capacity of supporting generalized learning, we prove
and illustrate asymptotic consistency and estimate rates of convergence, including convergence to
hypotheses with zero prior support, and ability of gripping dynamic of the world. In summary,
GBT unifies very different modes of learning, yielding a powerful, general framework for modeling
learning agents.
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1 Additional Materials

Cooperative Communication. Cooperative communication formalizes a single problem com-
prised of interactions between two processes: teaching and learning. The teacher and learner have
beliefs about hypotheses, which are represented as probability distributions. The process of teaching
is to select data that move the learner’s beliefs from some initial state, to a final desired state. The
process of learning is then, given the data selected by the teacher, infer the beliefs of the teacher. The
teacher’s selection and learner’s inference incur costs. The agents minimize the cost to achieve their
goals. Communication is successful when the learner’s belief, given the teacher’s data, is moved to
the target distribution.

Formally, denote the common ground between agents: the shared priors on H and D by P(h) and
P(d), the shared initial matrix over D andH by M of size |D| × |H|. In general, up to normalization,
M is simply a non-negative matrix which also specifies the consistency between data and hypotheses1

In cooperative communication, a learner’s goal is to minimize the cost of transforming the observed
data distribution P(D) to the shared prior over hypotheses P(H). A learner’s cost matrix CL =
(CL

ij)|M|×|H| is defined as CL
ij = − logM . A learning plan is a joint distribution L = (Lij), where

Lij = PL(di, hj) represents the probability of the learner inferring hj given di. It is proved in [Wang
et al., 2019] that:

Proposition S.1. Optimal cooperative communication plans, L, is the EOT plan with cost CL and
marginals being η = P(d) and θ = P(h).

2 Proofs

Proposition 1. The UOT problem with cost matrix C, marginals θ, η and parameters ϵ = (ϵP , ϵη, ϵθ)
generates the same UOT plan as the UOT problem with tC, θ, η, tϵ = (tϵP , tϵη, tϵθ) for any
t ∈ (0,∞).

Proof. Consider that the UOT problem solution is

P ϵ(C, η, θ) = argmin
P∈(R≥0)n×m

{⟨C,P ⟩ − ϵPH(P ) + ϵηKL(P1|η) + ϵθKL(PT1|θ)}. (1)

1Data, di, are consistent with a hypothesis, hj , when Mij > 0.
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Algorithm 1 Unbalanced Sinkhorn Scaling

input: C, θ, η, ϵ = (ϵP , ϵη, ϵθ), N stopping condition ω

initialize: K = exp(−ϵPC), v(0) = 1m

while k < N and not ω do
u(k) ← ( η

Kv(k−1) )
ϵη

ϵη+ϵP , v(k) ← ( θ
KTu(k) )

ϵθ
ϵθ+ϵP

end while
output: M = diag(u)Kdiag(v)

where the objective function is linear on C and ϵ.

P tϵ(tC, η, θ) = argmin
P∈(R≥0)n×m

{⟨tC, P ⟩ − tϵPH(P ) + tϵηKL(P1|η) + tϵθKL(PT1|θ)}

= argmin
P∈(R≥0)n×m

t · {⟨C,P ⟩ − ϵPH(P ) + ϵηKL(P1|η) + ϵθKL(PT1|θ)}

= P ϵ(C, η, θ). (2)

Proposition 2. The UOT plan P in Equation 1, as a function of ϵ, is continuous in (0,∞)× [0,∞)2.
Furthermore, P is differentiable with respect to ϵ in the interior.

Proof. For simplicity, in this proof, for a vector v, we use both vi and v(i) to represent a component
of v.

By definition, the UOT plan P minimizes the objective function Ω(P ; ϵ) = ⟨C,P ⟩ − ϵPH(P ) +
ϵηKL(P1|η) + ϵθKL(PT1|θ). Since Ω is a strict convex function on P , there is only one minimal
P . So the UOT plan P is the solution to∇PΩ = 0. From a direct calculation,

(∇PΩ)ij = Cij + ϵP lnPij + ϵη(ln(

m∑
k=1

Pik)− ln η(i)) + ϵθ(ln(

n∑
k=1

Pkj)− ln θ(j))

and
(∇2

PΩ)ijkl =
ϵP δikδjl

Pij
+

ϵηδik∑m
t=1 Pit

+
ϵθδjl∑n
t=1 Ptj

.

As we assume that Pij > 0 for all i, j, all the terms above are well-defined. Besides, ∇PΩ is C1 on
η, θ and ϵ. Therefore, we can show P ϵ(C, η, θ) is continuous not only on ϵ but also on η and θ after
checking Hessian. From implicit function theorem, if we show the above Hessian is invertible for
ϵP > 0, then the results of the proposition are true. Equivalently, it suffices to show that detH ̸= 0
where matrix H is the flattened∇2

PΩ by mapping (i, j, k, l) 7→ (im+ j, km+ l).

Invertibility of H . Let r be the vector of reciprocals of row sums of P , i.e., ri = 1/
(∑

j Pij

)
,

and similarly, let c be the vector of reciprocals of column sums of P , i.e., cj = 1/ (
∑

i Pij). Then

(∇2
PΩ)ijkl =

ϵP δikδjl
Pij

+ ϵηδikri + ϵθδjlcj .

Let ϕ be the map (i, j) 7→ (im+ j), then ϕ induces a reshaping of P to a vector of size mn, denoted
by Pϕ. When there is no ambiguity, we may omit the ϕ superscript.

Further define pϕ as a vector of dimension mn where pϕk = ϵP /P
ϕ
k . By definition, Hϕ =

ϵP (diag(p
ϕ)) + ϵη1m ⊗ (diag(r)) + ϵθ(diag(c)) ⊗ 1n where 1k is the k × k matrix of ones,

and A ⊗ B is Kronecker product (tensor product of matrices). Decompose H = D + G where
D = ϵP (diag(p

ϕ)) and G = ϵη1m ⊗ (diag(r)) + ϵθ(diag(c))⊗ 1n.

From now on, we may use P -row, P -column to represent i, j style indices, and G-row, G-column
or simply row/column to represent those of G, or the ones in range [1,mn]. D is diagonal, and
detG = 0. Furthermore,
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(∗) any row or column of G with index k can be represented by an entry position
(i, j) of P by inverse of ϕ, and any rows of indices k1, k2, k3, k4 corresponding to
(i1, j1), (i1, j2), (i2, j1), (i2, j2) (i.e., determined as intersections of two P -rows and two
P -columns) is linearly dependent: G(k1,_) +G(k4,_) −G(k2,_) −G(k3,_) = 0, we denote
this property as (∗).

Structure of detH: Let D = diag(p1, p2, . . . , pmn), then detH is a polynomial on pk’s with
constant term 0. Each term in detH is of form f(I)

(∏
k/∈I pk

)
for each subset I ⊆ {1, 2, . . . ,mn},

and the coefficient f(I) = detG(I,I) where G(I,I) is the submatrix with lines of indices not in I,
i.e., the entries of G(I,I) are of the form Gij with i ∈ I and j ∈ I.

Next we show that f(I) is nonnegative for all I, then with pk > 0 for all k, we can conclude
that detH > 0. Since I ⊆ {1, 2, . . . ,mn}, ϕ−1(I) ⊆ {1, 2, . . . , n} × {1, 2, . . . ,m}, and ϕ is a
bijection, we may not distinguish I from ϕ−1(I), in order to make the statement neater.

1. [Operation-(∗) on I]: We want to investigate the operations on I producing a subset J such
that f(I) = f(J ). By the properties of determinant, (∗) induces one operation: when I con-
taining 4 integer pairs which can form the vertices of a rectangle, f(I) = 0. Moreover, for any
k1, k2, k3, k4 such indices in (∗), we can generate row G(k4,_) by G(k4,_) = G(k2,_)+G(k3,_)−G(k1,_),
then if {k1, k2, k3} ⊆ I, we can build G(k4,_) on any G(ki,_), thus the determinant detGrow

(I,I) =

±detG(I,I) (positive for k2 and k3, negative for k1 ). Similarly, if we follow the same operation
on columns, we have detGcol

(I,I) = ±detG(I,I). And when doing both, detGcol·row
(I,I) = detG(I,I).

Therefore, we know that if k1, k2, k3 ∈ I, and J = {k4} ∪ I\{ki} for any i = 1, 2, 3, then
f(I) = f(J ). Such operations changing I to J is denoted by operation-∗. In short, an operation-∗
moves an end of a small “L-shaped” set of 3 pairs along a P -row or a P -column, producing another
L-shaped set of 3 pairs.

2. [Regularized form of I, and decomposition of nondegenerate regularized form I♯ into L-shaped
subsets]: Once I or any J equivalent to I via operations-∗ contains 4 pairs satisfying condition (∗),
f(I) = 0, then we call I degenerate. In decomposing I, when we find it degenerate, we stop since
f(I) is known.

We decompose I as set of pairs inductively in the following way before stopping. Start with any
(i, j) ∈ I, we look for pairs of form (i, l) and (k, j) in I, adding them into the subset A(i,j)

containing (i, j). Then check the degeneracy, by looking for whether I contains a point (k, l) with
(i, l), (j, k) ∈ A(i,j), whenever I is degenerate, we stop since f(I) = 0. Next we enlarge A(i,j) by
changing the set I to a regularized form using operation-∗’s. For each (k, l) with (i, l) ∈ A(i,j), then
(k, j) can be constructed on (k, l) via an operation-∗ with (i, j) and (i, l). Thus we modify I into
J = (i, l) ∪ I\(k, l) that f(I) = f(J ), and adding (i, l) into set A(i,j). Similar process can be
done for those (k, l) ∈ I with (k, j) ∈ A(i,j).

After regularizing I and enlarging A(i,j) to maximum about (i, j), we get a regularized form J of
I, with f(I) = f(J ), and a component A(i,j) of L-shape. The set of J \A(i,j) has no elements of
form (k, l) with (i, l) ∈ A(i,j) or (k, j) ∈ A(i,j), as they are already moved to A(i,j) by operation-
∗. Therefore, J \A(i,j) is supported on a rectangular region by deleting all P -rows (k, _)’s and
P -columns (_, l)’s where k, l’s occur in A(i,j).

Repeating the L-shaped component construction above for J \A(i,j), we can transform I into a
regularized form (not unique or standard) I♯ and we have a decomposition I♯ =

⋃
A(it,jt) into

L-shaped components, which do not intersect with each other. The name “regularized form” is
given to the transformed set with a L-shaped decomposition, and since only operation-∗ is applied,
f(I) = f(I♯).
3. [Properties between the L-shaped subsets:] For each I which we did not conclude f(I) = 0 in the
last step, we get I♯ and a decomposition I♯ =

⋃
t∈T At into L-shaped subsets.

The construction of components At induces such a property: for two distinct components At there
is no elements (i, j) ∈ At and (k, l) ∈ As, in normal words, the At occupies certain P -rows and
P -columns which is distinct from those of As.

For (i, j) and (k, l) with i ̸= k and j ̸= l, Gim+j,km+l = 0 from the formula that Gim+j,km+l =
ϵηriδik + ϵθcjδjl. Therefore, the decomposition I♯ =

⋃
t∈T At induces a decomposition of matrix
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G(I♯,I♯) into blockwise diagonal matrix
GA1,A1 0 . . . 0

0 GA2,A2 . . . 0
...

. . .
...

0 0 . . . GAt,At

 (3)

So for a decomposition I♯ =
⋃

t∈T At, we have f(I♯) =
∏

t∈T f(At).

4. [f(A) for an L-shaped component]: The last part is to show f(A) > 0 for all L-shaped components.
Recall that Gim+j,km+l = ϵηriδik + ϵθcjδjl, so for A an L-shaped component with s P -rows and t
P -columns, G(A,A) in general is of form

G(A,A) =



r1 + c1 . . . r1 r1 0 . . . 0
...

. . .
...

...
...

. . .
...

r1 . . . r1 + ct−1 r1 0 . . . 0
r1 . . . r1 r1 + ct ct . . . ct
0 . . . 0 ct ct + r2 . . . ct
...

. . .
...

...
...

. . .
...

0 . . . 0 ct ct . . . ct + rs


(4)

Recall the formula det
[

E B
C D

]
= det(E) det(D − CE−1B) and the matrix determinant lemma

det(diag(c) + r11T ) = (1 + r1T diag(c)−11) det(diag(c)) =
∏

ci(1 +
∑

(r/ci)).

If s = 1 or t = 1, the determinant of G(A,A) can be calculated directly by the matrix determinant
lemma above.

If s > 1 and t > 1, we cut Eq. (4) into 4 blocks
[

E B
C D

]
where E contains the upper left t× t

part, B is zero but the last row, C is zero but the last column, D is a matrix in a similar form as E.

According to the characters of B,C stated above, it can be found that CE−1B =
c2t1E

−1
t,t 1

T which is an s × s-matrix. The entry E−1
t,t = detE(1:t−1,1:t−1)/ detE where

E(1:t−1,1:t−1) is the matrix E without the last row and last column, moreover, E−1
t,t =(∏t−1

1 ci(1 +
∑t−1

1 (r1/ci))
)
/
(∏t

1 ci(1 +
∑t

1(r1/ci))
)
=

1 +
∑t−1

1 (r1/ci)

ct(1 +
∑t

1(r1/ci))
< 1/ct. There-

fore, CE−1B = λ11T with λ < ct and D − CE−1B = diag(r2:s) + (ct − λ)11T , whose
determinant is positive according to the matrix determinant lemma.

As a consequence, detG(A,A) > 0 for each L-shaped components A. So combining the discussions
in [1-4], we have detH = det(D +G) > 0.

Then the implicit function theorem implies the differentiability of P ϵ on ϵ.

Proposition 3. For any finite sP , sη, sθ ≥ 0, the limit of P ϵ exists as ϵ approaches to (∞, sη, sθ).
In fact, limϵ→(∞,sη,sθ) P

ϵ
ij = 1 for all i, j (Limit 1). Moreover, P ϵ converges to the solution to

min⟨C,P ⟩ − sPH(P ) + sθKL(PT1|θ), with constraint P1 = η, (5)

as ϵ→ (sP ,∞, sθ) (Limit 2). Similarly, P ϵ converges to the solution to

min⟨C,P ⟩ − sPH(P ) + sηKL(P1|η), with constraint PT1 = θ, (6)

as ϵ → (sP , sη,∞) (Limit 3). And in the case when ϵ → (sP ,∞,∞), the matrix P ϵ converges to
the EOT solution (Limit 4):

min⟨C,P ⟩ − sPH(P ), with constraints PT1 = θ and P1 = η. (7)

When ϵ→ (∞,∞, sθ), (∞, sη,∞) or (∞,∞,∞), the limit does not exist, but the directional limits
can be calculated..
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Proof. Recall that H(P ) = −
∑

ij(Pij lnPij − Pij), (∇PH)ij = − lnPij , and H(P ) is strictly
concave, therefore H has a unique maximum mn at Pij = 1, denoted by 1. Similarly, KL(a|b) =∑

i(ai(ln ai − ln bi)− ai + bi), ∇aKL(a|b)i = ln ai − ln bi, KL is strictly convex, therefore KL
has a minimum 0 at ai = bi for all i.

Limit 1. Shown by contradiction: When ϵ→ (∞, sη, sθ), suppose the limit limϵ→(∞,sη,sθ) P
ϵ
ij for

some (i, j) does not exist, or is not 1. Thus there is e > 0 that, for any δ > 0 and N > 0, there
exists a parameter ϵ1 = (ϵP , ϵη, ϵθ) such that ϵP > N , |ϵη − sη| < δ and |ϵθ − sθ| < δ, satisfying
|P ϵ

ij − 1| > e.

However, for any 0 < e < 1/2, let δ = 1, let E = (1+e) ln(1+e)−(1+e)+1 > 0, minΩ(P ; ϵ) ≤
Ω(1; ϵ) < C for some G > 0 where (1)ij = 1 for all (i, j), and any ϵ ∈ {(ϵP , ϵη, ϵθ) : sη/2 < ϵη <
3sη/2, sθ/2 < ϵθ < 3sθ/2, }. So there is a N > 0 such that NE > G + maxij Cij + mn + L
where L = − inf{ϵηKL(P1|η) + ϵθKL(P t1|θ)}, meaning those P with |Pij − 1| > e for some
(i, j) is not minimizing Ω.

The contradiction indicates that limϵ→(∞,sη,sθ) P
ϵ
ij = 1 for all i, j.

Limit 2 & 3: The situation of ϵθ →∞ and ϵη →∞ are similar, so we only prove for ϵθ →∞ case.
Let P̂ denote the solution to Eq. (6).

Let P̂ be the solution to the optimization with constraints. We first show that
limϵ→(sP ,sη,∞)

∑n
k=1 P

ϵ
kj = θj .

This is similar to limit 1. Suppose the limit either does not exist or is not θj , then there exists an e > 0
such that for any N > 0, δ > 0, there exists ϵθ > N , |ϵη − sη| < δ and |ϵP − sP | < δ, such that∣∣∣∣∣

n∑
k=1

P ϵ
kj − θj

∣∣∣∣∣ > e (8)

for some j. Thus KL((P ϵ)T1|θ) > E for some E > 0. Consider that ⟨C,P ⟩ ≥ 0, H(P ) ≥ −mn
and KL(P1|η) ≥ 0 are lower bounded, we can take sufficiently large N such that the P ϵ satisfying
Eq. (8) satisfy Ω(P ϵ; ϵ) > Ω(P̂ ; ϵ), making P ϵ fail to optimize Ω(·; ϵ), which is a contradiction.
Thus we have limϵ→(sP ,sη,∞)

∑n
k=1 P

ϵ
kj = θj .

For each ϵ = (ϵP , ϵη, ϵθ), let θϵ denote the (P ϵ)T1, then for any ϵ, the solution P ϵ is also the solution
to

min
P
⟨C,P ⟩+ ϵPH(P ) + ϵηKL(P1|η), with constraint PT1 = θϵ. (9)

Denote Φ(P, ϵP , ϵη) := ⟨C,P ⟩+ ϵPH(P ) + ϵηKL(P1|η) When ϵP ∈ (0,∞), the new objective
function Φ(P, ϵP , ϵη) is continuous on P and ϵP ,ϵη, and each minimization problem gets a unique
solution since the objective function is strictly convex. Therefore, the limit limϵ→(sP ,sη,∞)P ϵ = P̂ .
We show this via contradiction:

Suppose the opposite, there exists some ξ > 0 such that ||P ϵ − P̂ ||2 > ξ for ϵ arbitrarily close to
(sP , sη,∞). Let

α := inf
PT e=θ,||P−P̂ ||2>ξ

Φ(P, sP , sη)− Φ(P̂ , sP , sη),

α > 0 since the minimum P̂ is unique and the objective is strictly convex. The sets PT e = θϵ is
compact since it is closed and bounded, so there exists bounds b = (b1, b2, b3) for ϵ = (ϵP , ϵη, ϵθ)
such that in the bound where |ϵP − sP | < b1, |ϵη − sη| < b2 and ϵθ > b3, maxΦ(P, sP , sη) −
Φ(P ♯, ϵP , ϵη) < α/3 for P with PT e = θ and P ♯ its Euclidean projection to {PT e = θϵ}, and
maxΦ(P, ϵP , ϵη)− Φ(P ♭, sP , sη) < α/3 for P with PT e = θϵ and P ♭ its Euclidean projection to
{PT e = θ}.
Let ϵ be a parameter in the above bound b to (sP , sη,∞), where P = argminPT e=θϵΦ(P, ϵP , ϵη) is
ξ far from P̂ . Then Φ(P, ϵP , ϵη) > Φ(P ♭, sP , sη)−α/3 > Φ(P̂ , sP , sη)+2/3α > Φ(P̂ ♯, ϵP , ϵη)+

α/3 > Φ(P̂ ♯, ϵP , ϵη), which is a contradiction to the assumption that P is the argmin.

Limit 4: Similar to the previous two limits, we can say that limϵ→(sP ,∞,∞)

∑n
k=1 P

ϵ
kj = θj and

limϵ→(sP ,∞,∞)

∑m
k=1 P

ϵ
ik = ηi. Then the problem becomes the EOT problem, which has a unique

solution.
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Boundaries at ϵη = 0 or ϵθ = 0: It is simple to check the continuity when ϵη → 0 or ϵθ → 0. From
Prop. 2, the continuity and differentiability hold for ϵη → 0 or ϵθ → 0 when ϵP > 0.

Nonexistence of the limits when ϵP , ϵη →∞, and directional limits: Let a sequence ϵ1, ϵ2, . . .
where ϵi = (ϵiP , ϵ

i
η, ϵ

i
θ) satisfy lim ϵiP = lim ϵiη = ∞ and lim(ϵiη/ϵ

i
P ) = t, then the limit P of P ϵ

satisfy Pij = t(ln cj − lnn)/(t+ 1), since the limit minimizes the following objective function

H(P ) + tKL(P1|η).

The reason is, as
∑

ηi = 1, H(P ) and KL(P1|η) cannot vanish for the same P , thus the minima of
objective function approaches to infinity, therefore the finite terms ⟨C,P ⟩ and ϵθKL(PT1|θ) tend to
have no effect on the minimal point P as ϵP , ϵη increases to infinity.

A direct consequence of the above discussion is, when t changes, the limits P of those sequences
changes, which indicates that the limit of P ϵ as ϵ→ (∞,∞, sθ) fails to exist. And similar situation
happens when ϵ→ (∞, sη,∞)

Nonexistence of the limits when ϵP , ϵη, ϵθ →∞, and directional limits : Similar to the discus-
sions above, let the sequence ϵ1, ϵ2, . . . where ϵi = (ϵiP , ϵ

i
η, ϵ

i
θ) satisfy limi→∞ ϵi = (∞,∞,∞).

Further let lim(ϵiη/ϵ
i
P ) = u, lim(ϵiθ/ϵ

i
P ) = w, then P ϵi converges to the solution to the problem

H(P ) + uKL(P1|η) + wKL(PT 1|θ),

which could be considered as another UOT problem with cost function constantly 0.

Corollary 4. Consider a UOT problem with cost C = − logP(d|h), marginals θ = P(h), η ∈ P(D).
The optimal UOT plan P (1,ϵη,ϵθ) converges to the posterior P(h|d) as ϵη → 0 and ϵθ →∞. Bayesian
inference is a special case of GBT with ϵ = (1, 0,∞).

Proof. As direct application of Limit 3 of Proposition 3, we only need to show that the optimal plan
P (1,0,∞) is propositional to the posterior P(h|d).

P (1,0,∞) = argmin
P∈U(θ)

K(P ) := argmin
P∈U(θ)

{⟨C,P ⟩ −H(P )}. (10)

where U(θ) = {P ∈M(D ×H)|PT1 = θ}.

Let λ ∈ R+m, consider the corresponding Lagrangian problem:

L(P,λ) := ⟨C,P ⟩ −H(P ) + ⟨λ, (PT1− θ)⟩

Partial derivatives ∂Pij = 0 and ∂λjL = 0 result the following system of equations:

logPij − logP(di|hj) + λj = 0
∑
i

Pij − P(hj) = 0 (11)

Calculation shows that the solution to Equation 11 is Pij =
P(di|hj)P(hj)∑

i P(di|hj)
= P(di|hj)P(hj) ∝

P(hj |di). Hence the proof is completed.

Corollary 5. Consider a UOT problem with θ ∈ P(H), η = P(d). The optimal UOT plan P (ϵP ,∞,0)

converges to η ⊗ 1 as ϵP →∞. Frequentist Inference is a special case of GBT with ϵ = (∞,∞, 0).

Proof. As direct application of Proposition 3, we only need to show that P (∞,∞,0) = η ⊗ 1. Notice
that the limit problem

P ϵ(C, η, θ) = argmin
P∈(R≥0)n×m

{⟨C,P ⟩ − ϵPH(P ) + ϵηKL(P1|η) + ϵθKL(PT1|θ)}. (12)
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as ϵ→ (∞,∞, 0) along ϵP -up direction is equivalent to

P (∞,∞,0) = argmin
P∈(R≥0)n×m

H(P ), with constraint P1 = η (13)

Hence P (∞,∞,0) = η ⊗ 1.

Corollary 6. Let cost C = − logM , marginals θ = P(h) and η = P(d). The optimal UOT plan
P (1,ϵη,ϵθ) converges to the optimal plan L as ϵη → ∞ and ϵθ → ∞. Cooperative Inference is a
special case of GBT with ϵ = (1,∞,∞), which is exactly entropic Optimal Transport [Cuturi, 2013].

Proof. According to proposition 1, L = P (1,∞,∞), and the convergence result is a direct application
of Limit 4 of Proposition 3

Corollary 7. Consider a UOT problem with cost C = − logP(d, h), m = n, and marginals θ = η
are uniform. The optimal UOT plan P (ϵP ,ϵη,ϵθ) approaches to a diagonal matrix as ϵη, ϵθ →∞ and
ϵP → 0. In particular, discriminative learner is a special case of GBT with ϵ = (0,∞,∞), which is
exactly classical Optimal Transport [Villani, 2008].

Proof. Limit 4 of Proposition 3 implies the convergence of P (ϵP ,ϵη,ϵθ) → P (0,∞,∞) as ϵη, ϵθ →
∞ and ϵP → 0. When m = n, P (0,∞,∞) is a permutation matrix is the result of Wang et al.
[2020b][Proposition 8].

Proposition 8. In GBT with ϵθ =∞, cost C and current belief θ. The learner updates θ with UOT
plan in the same way as applying Bayes rule with likelihood from P ϵ(C, η, θ), and prior θ.

Proof. From the GBT algorithm (Algorithm 1 in the main text), for a general data point di chosen,
the GBT takes the vector normalization of some row P ϵ, i.e., θ′ = P ϵ

(i,_)/(
∑

j P
ϵ
ij).

On the other hand, when we apply Bayes rule to P ϵ, prior is θ = P(h), likelihood P(d|h) is the
column normalization of P ϵ, satisfying P(di|hj) = P ϵ

ij/(
∑

i P
ϵ
ij) = P ϵ

ij/θj . The last equality is
because θ(i) =

∑
j P

ϵ
ij when ϵθ = ∞. So the posterior P(h|di) is the vector normalization of

P(di|h)P(h), by P(di|hj)P(hj) = P ϵ
ij/θj ∗ θj = P ϵ

ij . Therefore, P(hj |di) = θ′(hj).

Now, we introduce some notations will be used in the following proofs.

Notations. Denote the set of all possible belief by ∆ = P(H). Distribution of Θk is denoted by µk.
We only consider the case where no two hypotheses are the same inH. Hence we make the following
assumption that columns of exp(−ϵPC) are not differ by a multiplicative scalar, i.e. columns of C
are not differ by an additive scalar.
Lemma S.2. For ϵ = (ϵP ,∞,∞), ϵP ∈ (0,∞), given cost C with initial belief θ0 ∈ P(H) and
fixed teaching and learning distribution ηk = η ∈ P(D) for all k, then the belief random variables
(Θk)k∈N have the same expectation on h: EΘk

[θ(h)] = θ0(h).

Proof. We start the proof by showing EΘk
[θ(h)] = EΘk−1

[θ(h)] for k ≥ 1. Notice that given cost C
and data marginal η, an observed data d ∈ D and UOT planning uniquely determines a map from a
learner’s initial belief θk−1 to one’s posterior belief θk. Denote this map by Td : θk−1 7→ θk. Let the
distribution of Θk−1 over P(H) be µk−1, denote its support by Sk−1. Then the following holds:

EΘk
[θ(hj)] =

∑
θ∈Sk−1

µk−1(θ)
∑
di∈D

ηiTdi(θ)(hj) =
∑

θ∈Sk−1

µk−1(θ)
∑
di∈D

ηi
Mk(i, j)

ηi

=
∑

θ∈Sk−1

µk−1(θ)
∑
di∈D

Mk(i, j) =
∑

θ∈Sk−1

µk−1(θ)θ(h
j) = EΘk−1

[θ(h)]

Hence EΘk
[θ(h)] = EΘk−1

[θ(h)] = · · · = EΘ0
[θ(h)] = θ0(h).
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Theorem 10 (PS). Consider a learning problem with initial belief θ0 ∈ P(H), and the true hypothesis
h∗ defined by η ∈ P(D). If the learner’s data distribution ηk = η, then belief random variables
(Θk)k∈N converge to the random variable Y in probability, where Y =

∑
h∈H θ0(h)δh and Y is

supported on {δh}h∈H with P(Y = δh) = θ0(h) for ϵη = ϵθ =∞ and ϵP ∈ (0,∞).

Proof. Step 1: First, we show the following claim inspired the proof proposition 5.1 in Wang et al.
[2020a]

Claim: limk→∞ µk(∆ϵ) = 0, for any ϵ > 0, where ∆ϵ := {θ ∈ ∆ : θ(h) ≤ 1− ϵ,∀h ∈ H}.
Assume the claim does not hold, then there exists α > 0 and a subsequence (µki

)i∈N such that
µki

(∆ϵ) > α for all i.

Let the center of ∆ be u, we define L(µ) := Eµf(θ), where f(θ) = ∥θ−u∥22, (f may also be chosen
as entropy H(θ)). Then L(µk+1) = Eµk

(Ed∼ηf(Td(θ))).

Notice that f is strictly convex, by Jensen’s inequality,

Ed∼ηf(Td(θ))
(a)

≥ f(Ed∼ηTd(θ))
(b)
= f(θ) (14)

Here (b) holds because:

Ed∼ηTd(θ)
(c)
=

∑
di∈D

ηi · (Mk(i, _)/ηi) =
∑
di∈D

Mk(i, _)
(d)
= θ (15)

(c), (d) hold since Mk has marginals η, θ.

Moreover, equality holds in (a) if and only if Td(θ) = θ for all d ∈ D. Thus rows of Mk are the
same up to a scalar. This implies either (1) only one column of Mk is none zero, thus Θk ≡ δh for
some h or (2)Mk has at least two columns are differed by a scalar.

In the case of (1), if θ0 ̸= δh, Θk ≡ δh is contradict to Lemma 8. Otherwise, Y = δh, the result
holds. In the case of (2), according to Wang et al. [2019], Mk is cross-ratio equivalent to exp(−ϵPC),
hence exp(−ϵPC) has two columns differ by a multiplicative scalar, contradict to the assumption.

Thus for any θ ∈ ∆ϵ, Ed∼ηf(Td(θ)) > f(θ). Therefore L(µk+1) > L(µk) for any k.

Moreover, notice that ∆ϵ is compact, there is a lower bound β > 0, such that Ed∼ηf(Td(θ))−f(θ) >
β for all θ ∈ ∆ϵ. Therefore:

L(µki+1) = Eθki+1∈∆ϵ
(Ed∼ηf(Td(θ))) + Eθki+1∈∆\∆ϵ

(Ed∼ηf(Td(θ)))

> Eθki
∈∆ϵ

(f(θ)) + Eθki
∈∆\∆ϵ

(f(θ)) + α ∗ β
= L(µki

) + α ∗ β.
(16)

Thus L(µki+s) > L(µki
) + s ∗ α ∗ β → ∞ as s → ∞. On the other hand, by definition, f(θ) is

bounded above by the diameter of ∆ under l2 norm, so L(µ) is also bounded above. Contradiction!
Therefore, the Claim holds.

Step 2. We show limk→∞ P(Θk ∈ ∆h
1−ϵ) = limk→∞ µk(∆

h
1−ϵ) = θ0(h), for all h ∈ H where

∆h
1−ϵ := {θ ∈ ∆ : θ(h) > 1− ϵ}.

For a fixed h ∈ H, we have:

θ0(h)
(a)
= EΘk

(θ(h))
(b)
= Eθk∈∆h

1−ϵ
(θ(hj)) + Eθk∈∆u

1−ϵ
(θ(h)) + Eθk∈∆ϵ(θ(h))

(c)

≤ µk(∆
h
1−ϵ) · 1 + µk(∆

u
1−ϵ) · ϵ+ µk(∆ϵ) · 1

= µk(∆
h
1−ϵ) + ϵ+ µk(∆ϵ)

where ∆u
1−ϵ denotes the union of all the other corners of ∆, i.e. ∆u

1−ϵ := ∪h′∈H\h∆
h′

1−ϵ. Here (a) is
direct application of Lemma 8; (b) holds since ∆ = ∆h

1−ϵ ∪∆u
1−ϵ ∪∆ϵ. (c) holds because in general

8



θ(hj) < 1, and θ(hj) < ϵ for any θ ∈ ∆u
1−ϵ. Therefore, 0 ≤ θ0(h)−µk(∆

h
1−ϵ) ≤ ϵ+µk(∆ϵ)→ ϵ as

k →∞ hold for any choice of ϵ. Pick a sequence of ϵ→ 0, we have that limk→∞ µk(∆
h
1−ϵ) = θ0(h).

Hence combining results from Step 1 and Step 2, we have shown Θk converges to Y in probability:
P(|Θk − Y | > ϵ) ≤ µk(∆ϵ) +

∑
h∈H(θ0(h) − µk(∆

h
1−ϵ)) → 0 as k → ∞. Hence the proof is

completed.

Corollary 11. Given a fixed data sequence di sampled from η, if θk converges to δhj , then the j-th
column of Mk converges to η.

Proof. For ϵ > 0, there exists N > 0 such that θk(hj) > 1−ϵ for any k > N . So
∑

j′ ̸=j Mk(i, j
′) <

ϵ for any di ∈ D, on the other hand
∑

j′ Mk(i, j
′) = ηi. This implies that ηi − ϵ < Mk(i, j) < ηi,

so Mk(i, j)→ ηi as ϵ→ 0. Therefore the j-th column of Mk converges to η.

Proposition 12. Consider a learning problem with cost C, initial belief θ0 ∈ P(H), the true
hypothesis h∗ defined by η ∈ P(D). If the learner updates the estimation ηk with observed data
(sampled from η) as stated above, then belief random variables (Θk)k∈N satisfies that for any s > 0,
limk→∞

∑
h∈H P(Θ(h) > 1− s) = 1. As a consequence, Mk as the transport plan has a dominant

column (hj) with total weights > 1− s, and |(Mk)ij − ηk(i)| < s. In fact, as long as the sequence
of ηk as random variables converges to η in probability, the above proposition holds.

Proof. The proof is similar to Step 1 of Theorem 10. The major difference is that data are sampled
from η in each step, whereas the learner only has an estimation ηk at round k. Therefore, under
current condition, equality (b) of Eq 14 need to be modified as following:

Ed∼ηTd(θk) =
∑
di∈D

ηi · (Mk(i, _)/ηik) =
∑
di∈D

Mk(i, _) · η
i

ηik
= θk ⊙ vk. (17)

where vk = ( η
i

ηi
k

) is a vector of the size of the data set D, and ⊙ represents element-wise product.
Hence Ed∼ηf(Td(θk)) = f(θk ⊙ vk) holds for all θk ∈ ∆. Since ηk → η as k → ∞. For any

α∗β > 0, there exists N > 0 such that for k > N , |1− ηi

ηi
k

| <
√

α∗β
2n . Hence: |f(θk⊙vk)−f(θk)| ≤

α∗β
2 . Then corresponding to Eq 16, for ki > N , we have:

L(µki+1) = Eθki+1∈∆ϵ(Ed∼ηf(Td(θ))) + Eθki+1∈∆\∆ϵ
(Ed∼ηf(Td(θ)))

> Eθki
∈∆ϵ

(f(θk ⊙ vk)) + Eθki
∈∆\∆ϵ

(f(θk ⊙ vk)) + α ∗ β

> Eθki
∈∆ϵ(f(θk)) + Eθki

∈∆\∆ϵ
(f(θk))−

α ∗ β
2

+ α ∗ β

= L(µki
) +

α ∗ β
2

.

Hence the contradiction on the upper bound of L(µki+1) still holds, which shows the claim that:
limk→∞ µk(∆ϵ) = 0. So limk→∞

∑
h∈H P(Θ(h) > 1− s) = 1. The proof for the second part of

the proposition follows exactly as Corollary 11.

Proposition 14. For ϵ = (ϵP , ϵη, 0) with ϵP ∈ (0,∞), as ηk → η almost surely, the sequence
Θk of posteriors as a sequence of random variables converges in probability to variable Θ, where
P(Θ = vi) = η(i) and vi = P(i,_)/

(∑m
j=1 Pij

)
and P = P ϵ(C, η, θ). Therefore, for any s > 0,

limk→∞
∑

h∈H P(|Θk(h)− 1| < s) = 0 for generic (for all but in a closed subset) cost C and η, θ.

Proof. First, ϵθ = 0 means that P ϵ(C, η, θ) is independent of θ. Therefore, Mk = P ϵ(C, ηk, θ)
and has a limit P ϵ(C, η, θ), regardless of the concrete posterior θk. From construction of GBT, the
posterior Θk is determined by P(Θk = wi

k) = η(i) where wi
k = (Mk)(i,_)/

∑m
j=1(Mk)ij . Given

the coupling (Θk,Θ) by setting only P(Θk = wi
k,Θ = vi) = η(i) for each i, we may calculate

P(|Θk −Θ| < s) converge to 1 as Mk converge to P ϵ(C, η, θ).

9



For generic C, η, θ, the probability of P ϵ(C, η, θ) having a row with only one nonzero entry is 0.

Remark: As ηk → η almost surely, for any e > 0, there exists N > 0, such that, when k > N , the
probability of having ηk e-close to η is 1. Thus in almost all episodes, with generic C, η, θ, when e is
small enough, for any ||η′ − η|| < e (using p−∞ norm, same for below), the row-normalized (to
1n) UOT plans

max
i
||P ϵ

r (C, η
′, θ)(i,_) − P ϵ

r (C, η
′, θ)(i,_)|| <

1

4
min
i,j
||P ϵ

r (C, η, θ)(i,_) − P ϵ
r (C, η, θ)(j,_)||

where P ϵ
r is the row normalization of P ϵ.

Therefore, for such e, we may find an N > 0 such that for any k, k′ > N , P ϵ
r (C, ηk, θ) ̸=

P ϵ
r (C, η

′
k, θ). However, for generic η, say, no entry of η is 0, ||θk − θ′k|| < when k, k′ > N and

dk ̸= dk′ . Thus the posterior sequence of almost every episode fails to converge.

The original statement of the following Proposition is problematic, we changed the statement
accordingly.

Proposition 16. For a Bayesian learner, the posterior sequence {Θk} converges almost surely to δh
where h = argminh′∈H KL(η|M(_,h′)) and M = e−C/ϵP , η = 1

p

∑p−1
k=0 ηk.

Proof. Based on the proof of Prop. 9, the behavior of the posterior sequence is determined by teaching
data governed by the Central Limit Theorem.

We calculate log (Θk(h
′)/Θk(h)) for any h′ ̸= h. With a tuple (d0, d1, . . . , dk) of data points

sampled from η⃗ periodically,

log (θk(h
′)/θk(h)) =

k∑
s=0

(
log(M(ds,h′))− log(M(ds,h))

)
=

∑
d∈D

λd(log(M(d,h′))− log(M(d,h))

= t
(
KL(λ|M(_,h′))−KL(λ|M(_,h))

)
. (18)

where λ is the empirical distribution of the data points (d0, d1, . . . , dk).

According to the central limit theorem, the teacher following η⃗ produces a sequence with associated
empirical distribution η almost surely. Thus the posterior sequence converges to δh with h of the
greatest KL-divergence.

Proposition 17. For ϵ in the interior of the cube, for (PS) problem, the sequence {Θ⃗t} (random vari-
ables overP(H)p) form a time-homogeneous Markov chain. For (RS) problem, {(Θ⃗t,

1
pt

∑p−1
k=0 tηk)},

the random variable sequence producing samples {(θ⃗t, 1
pt

∑pt−1
k=0 δdk

)}, forms a Markov chain.

Proof. Define Φt = (Θ⃗t,
1
pt

∑p−1
k=0 tηk), whose sample is ϕt = (θ⃗t, λt) where θ⃗t =

(θ(t−1)p, θ(t−1)p+1, . . . , θtp−1) and λt is the empirical (statistical) distribution of the set of taught
data points {d0, d1, . . . , dtp−1}.
Since in (PS) problem, θk is determined by θk−1, a fixed η and dk−1, via the UOT solution. Thus,
Θk depends on Θk−1 only. So, Θ⃗t depends only on Θ⃗t−1, showing that Θ⃗t is time-homogeneous
Markovian.

For (RS) problem, λt is determined by λt−1 and the sample (d(t−1)p, d(t−1)p+1, . . . , dtp−1) from η⃗,
and θ⃗t is determined by θ⃗t−1 (in fact, just the last element θ(t−1)p−1) and λt−1. Therefore, we get
the Markovianess.
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3 Additional Simulations

Interpolation between learning models can be investigated properly under GBT. Human learners
appear to be capable of moving between different learning models gradually. Consider an individual
at a carnival who is playing a game. At each of 10 trials, a bit of information is provided, but
the available reward decreases. The individual has a pool of tickets with which they can bet on
the outcome at each trial. The question is how the individual should update their beliefs in order
to maximize their rewards. On the first trial, their belief update, in order to accurately reflect the
evidence, should follow Bayes rule. However, for the last trial, one should focus bets on the most
probable outcome in order to maximize chances for rewards, that is, their beliefs should be optimized
for discriminating among the possible outcomes. GBT offers a coherent way of interpolating between
these two approaches to provide candidate strategies on the intermediate steps. Such situations
are common where there is an explicit constraint on the time horizon after which point no further
evidence can be obtained, and there are incentives to act early, rather than to wait until evidence has
fully accumulated; for example, identifying dangerous situations (tiger or not? poisonous or not?).

We now demonstrate how continuity of GBT (section 3.1) allows one to gradually interpolate between
Bayesian and discriminative learning over steps (rather than a sharp switch).

3.1 Simulation Setup

Suppose a learner who observes data sampled from a true hypothesis P(d|h∗), and needs to make a
conclusion on whether h∗ is one of the hypotheses inH within a fixed number N of observations.

Here we compare a baseline learner who utilizes Bayesian inference (ϵ = (1, 0,∞)) on the first
N − 1 observations, and switch to discriminative learning (ϵ = (0,∞,∞)) on the last observation,
against learners who interpolate from Bayesian to discriminative learning gradually along a sequence
of models on curves in GBT. Two curves along with intermediate models are shown red and orange
in Figure 1.

We take a random sampled M of shape 4× 4 as an example,

M =

 0.225779 0.014886 0.433787 0.050735
0.613779 0.322347 0.172658 0.109262
0.069799 0.620178 0.29083 0.243635
0.090643 0.042588 0.102725 0.596368

 .

Thus |H| = |D| = 4. Set N = 10 and start from uniform θ = (0.25, 0.25, 0.25, 0.25).

Simulation details: We perform 40000 trials in total. For each trial s (or say each episode), we
uniformly sample Xs ∈ P(H), and let the true hypothesis h∗ be a normalized (thus a distribution)
column of M , uniformly sampled from the 4 columns. While teaching the episode, in each round,
we sample a hypothesis h ∈ H following Xs, then sample a data d following the column of M
corresponding to d. During inference, we set ηk by counting the frequency of each d ∈ D (starting
from 1 to avoid 0 in ηk) and then normalize, as stated in (RS) model in Sec. 3.

Figure 1: Baseline (sharp change) and two paths we follow on the parameter space of GBT.
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3.2 Results

Following paths shown in Fig. 1, for baseline (blue, left), path 1 (orange, middle), and path 2 (red,
right), the distribution of maximal component of each posterior at round 10 are shown in histograms
of 30, and the entropy of these posteriors are plotted in the lower three figures.

Conclusiveness (minimal l1 distance between posterior and a 1-hot vector) and posterior entropy are
plotted as histograms. The results show that the smoother path may lead to a more conclusive posterior.
Numerical results: Conclusiveness of Blue: mean 0.9406, standard deviation 0.1300. Conclusiveness
of Orange: mean 0.9964, standard deviation 0.0327. Conclusiveness of Red: mean 0.9834, standard
deviation 0.0676. Furthermore, compared with a sudden jump, gradual interpolations have lower
entropy. Numerical results: entropy of Blue: mean 0.1261, standard deviation 0.2435, entropy of
Orange: mean 0.0079, standard deviation 0.0629; entropy of Red: mean 0.0388, standard deviation
0.1336.

Thus learning tends to be more conclusive along these paths. Here conclusiveness means that the
ability of getting a conclusion (one component of the posterior eventually becoming dominant).
Furthermore, the entropy distributions shown in the lower figures also illustrate this point, as compare
to baseline, gradual interpolations have lower entropy.

It is necessary to consider that, the two paths and interpolations are chosen for demonstration purpose,
by no means they are optimal. However, we believe GBT is capable of facilitating exploration of
such optimization.

Figure 2: Results. Upper: distribution of maximal component of posterior. Lower: Entropy distribution of
posteriors. Left: baseline. Middle: along path 1. Right, along path 2.

3.3 Sequential GBT: Dynamic

There are some more data from simulation, all with M of size 3× 3, exploring the effects of varying
ϵ and choosing different M .

We first investigate the behavior when ϵ = (1, ϵη, ϵθ) where ϵη, ϵθ ∈ [0,∞). We choose a grid
(10−2, 10−1, . . . , 109)2 and measure asymptotic diverging distance 1

p

∑tp−1
k=(t−1)p ||E[Θk]−E[Θ⃗t]||2

at each point in the grid, where M and the circular teaching path is shown in Fig. 3 (a), and the result
is shown in (b). The “asymptotic” value is the average of last 5 periods in the 15 period simulations
where t = 15, period p = 20 and total steps k = 300 in each episode (empirically, the last 5 periods
are usually stable enough to represent the asymptotic situation). The mean of 10240 episodes are
taken to estimate the expectation of Θk and ⃗Thetat. We see a higher contribution of ϵθ than ϵη in
controlling the posteriors’ converging either to a point or to an attractive curve.

Next, we choose a set of M randomly, and set the teacher teaching along a circle of period 20. We are
interested in the relation between the matrix and the area ratio (posterior loop divided by the teaching
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Figure 3: Influence of ϵ on the average distance between stable posterior and the Euclidean barycenter of each
posterior period. (a) The setup, M and the teaching path. (b). the result. With the asymptotic average diverging
distance of each period represented by colors of each cell, and the parameter ϵ represented by positions, it can
be seen from the figure that when ϵθ is large, the average posterior tends to converge and fail to detect the
periodicity of teacher. The most sensitive ϵ occurs when ϵθ ≈ 10.

Figure 4: The same figure as in Fig. 3 (b), with a finer grid (1, 2, 4, 8, . . . , 128)2. The setup of M and the
teacher stays the same as in Fig. 3 (a)

loop). In Fig. 5, the area ratio roughly follows a linear relation to the area of the 3 columns of M
(equivalently, a constant times det(M)). A linear regression with the R value 0.997 shows that the
slope is 0.318 and the intercept is 0.005.
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