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Much of learning and reasoning occurs in pedagogical situations—
situations in which a person who knows a concept chooses exam-
ples for the purpose of helping a learner acquire the concept. We
introduce a model of teaching and learning in pedagogical settings
that predicts which examples teachers should choose and what
learners should infer given a teacher’s examples. We present three
experiments testing the model predictions for rule-based,
prototype, and causally structured concepts. The model shows
good quantitative and qualitative fits to the data across all three
experiments, predicting novel qualitative phenomena in each case.
We conclude by discussing implications for understanding concept
learning and implications for theoretical claims about the role of
pedagogy in human learning.
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1. Introduction

One of the most basic questions in cognitive science is how people are able to learn the knowledge
they need in order to function in the world. Traditionally, formal approaches to learning have focused
on different kinds of knowledge representation and inductive biases that facilitate learning about the
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world (e.g. Bruner, Goodnow, & Austin, 1956; Medin & Schaffer, 1978; Murphy & Medin, 1985;
Nosofsky, Gluck, Palemeri, & McKinley, 1994; Pothos & Chater, 2002; Rogers & McClelland, 2004;
Rosch & Mervis, 1975; Shepard, Hovland, & Jenkins, 1961; Tenenbaum, Griffiths, & Kemp, 2006). These
approaches emphasize individual learners and the explanations of how knowledge is obtained focus
entirely on each learner’s direct experience with the world and the consequent effects on beliefs.
While these capacities are certainly an important part of the explanation of how people come to
knowledge about the world, the focus on representation, inductive biases, and individual experience
has overlooked another potentially important mechanism that can facilitate learning: other people.

Of the many ways other people may influence an individual’s learning, pedagogical situations stand
out as having the greatest potential impact on learning. Pedagogical situations are settings in which
one agent is choosing information to transmit to another agent for the purpose of teaching a concept
(Csibra & Gergely, 2009). Societies have gone to great lengths to facilitate pedagogical situations. In
schools, teachers impart their knowledge to students about mathematics, science, and literature
through examples and problems. From early in life, parents teach children words for objects and
actions by providing them with examples, and establish cultural and personal preferences through
subtle glances and outright admonitions.

In addition to providing a means by which individuals can rapidly learn about the world, research-
ers have argued that pedagogy plays a critical role in cultural evolution. One of the central questions in
research on cultural evolution is why humans seem to accumulate knowledge over generations at a
much more rapid pace than other animals. Or, in the words of Tomasello (1999), what forms the
cultural ratchet that allows knowledge to accumulate? Csibra (2007) has argued that teaching is
the explanation—that only humans have a natural ability to engage in and take advantage of explicit
teaching situations. However, no one has provided a formal description of what pedagogical reasoning
is and how having a teacher who chooses information to present differs from situations in which
information is sampled by a relatively uninformative random process.

The key characteristic of pedagogical situations that differentiates learning from the typically
assumed model is the presence of a teacher who samples (or chooses) data to help the learner infer
the correct answer. Standard approaches to learning assume that data are sampled by some relatively
uninformative random process, either implicitly (e.g. Nosofsky, 1986; Pothos & Chater, 2002; Rogers &
McClelland, 2004) or explicitly (e.g. Anderson, 1991; Fried & Holyoak, 1984; Tenenbaum, 1999;
Tenenbaum & Griffiths, 2001a); however, intuitively it seems that random selection of data does
not capture teaching. Instead, it seems more natural to think about teachers as choosing data purpose-
fully, to achieve the goal of teaching. Understanding pedagogical reasoning requires formalizing this
process of pedagogical sampling and describing how it affects learning.

In principle, the helpful sampling of data seems likely to allow learning to proceed much more
rapidly than if no instruction were provided. If the learner were aware of the teacher’s intention to
help, they could use this knowledge to make even stronger inferences. Indeed, recent research has
argued that from a very young age children understand implications of pedagogical situations, and
use this knowledge to guide inferences (Topal, Gergely, Miklosi, Erdohegyi, & Csibra, 2008).

In this paper, we examine pedagogical contexts from the perspective of a rational reasoner, asking
how a concept can be optimally taught to a learner by a teacher. We formalize pedagogical reasoning
in terms of two problems, one from the perspective of the teacher and one from the perspective of the
learner. For the teacher, the problem is to choose the examples that will most help the learner infer the
correct concept. For the learner, the problem is to infer the correct concept, given the knowledge that
the teacher is choosing helpful examples. The solution to these two interlinked problems is a rational
account of pedagogical reasoning.

Our approach contrasts with previous work investigating social influences on learning. For
instance, researchers have investigated the effects of cooperation among learners (e.g. Gureckis &
Goldstone, 2006), the effects of the responsibility to teach on motivation to learn (e.g. Chase, Chin,
Oppezzo, & Schwartz, 2009), and the effects of communication on category structure (e.g. Markman
& Makin, 1998) to name just a few. Critically, these approaches focus on how social context influences
learning via basic learning processes or how social context influences the kinds of concepts we are
inclined to adopt. Our focus is on how the purposeful, goal-directed behavior of others can be
leveraged to expedite learning.
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We test the predictions of our formal framework using a novel experimental paradigm we call
teaching games (see also Avrahami et al., 1997). Teaching games are two-part experiments in which
participants play the role of teacher, in which they know the answer and are asked to choose the data
that will be most helpful, and of learner, in which they are provided examples chosen by a teacher and
are asked to infer the true concept. These games are used to investigate pedagogical reasoning in sit-
uations where prior knowledge is well controlled and allow systematic tests of the model predictions.

We begin by discussing evidence that people are sensitive to sampling processes in general. We
then introduce the idea that we can model learning as Bayesian inference and formalize pedagogical
reasoning within this framework. Next, we present a series of experiments testing the predictions of
the pedagogical model with different kinds of conceptual structures: rule-based, prototype, and causal
concepts. We conclude by discussing implications for concept learning and implications for claims
about the role of pedagogy in human learning.
2. Sensitivity to how data are sampled

For people to use pedagogically sampled data to guide learning two minimal conditions must be
met. First, teachers must choose helpful examples. Second, learners must be able to use knowledge
about the sampling process to guide inferences and understand the implications of data chosen by a
teacher. There has been relatively little research on which examples people choose to teach in concept
learning tasks (but see Avrahami et al., 1997). However, recent research has provided ample evidence
that adults, even very young children, understand that different sampling processes warrant different
inferences and they make different inferences in pedagogical situations than in other situations.

Xu and Denison (2009) investigated infants’ expectations about balls drawn from a bin either
intentionally or randomly. In the intentional conditions, the person drawing had visual access to
the bin and could therefore choose a preferred ball. The unintentional conditions consisted of a blind-
folded person sampling from the bin. The results showed that children were relatively unsurprised
when people in the intentional condition drew low probability balls from the box, while children in
the unintentional condition were surprised when low probability balls were drawn from the box, sug-
gesting that even infants are sensitive to the how intentional sampling affects outcomes.

Similarly, Xu and Tenenbaum (2007a, 2007b) have shown that children and adults use knowledge
about how language constrains sampling to guide word learning. In these experiments, participants
were asked to generalize a novel word from either one or three examples. The results showed that
people generalized labels more broadly from one example than from three examples, consistent with
an understanding that named examples are constrained to be positive examples of a concept; when
sampling is restricted to only positive examples, the absence of labeled examples provides evidence
against larger concepts. Together these results provide strong evidence that people use their knowl-
edge of how data are sampled to guide inferences.

Additional evidence suggests that even young children draw different inferences in pedagogical
and non-pedagogical settings (Csibra & Gergely, 2006, 2009). In one particularly compelling demon-
stration, Topal et al., 2008 showed that the behavior of 10-month-old infants was highly dependent
on the pedagogical nature of experimental settings. In their experiment, children were given the stan-
dard A-not-B task (Piaget, 1955). In this task, a toy is repeatedly hidden under one of two containers
(container A) and the child is encouraged to search for the toy. These trials are accompanied by
persistent and repeated ostensive-pedagogical cues—calling the child’s name and alternating eye-gaze
between the child and container A. Then, on the critical trial, the toy is hidden under the other
container, container B, in view of the child. The standard finding is that the child continues to search
under container A, even though they observed the toy being placed under container B. Topal et al.
(2008) asked whether children’s perseverative behavior was a result of the pedagogical nature of
the situation. They tested this by contrasting children’s behavior with and without ostensive cuing.
The results showed significantly less perseveration in non-pedagogical situations, consistent with they
claim that infants draw different inferences in pedagogical and non-pedagogical situations.

The results of these studies illustrate that human learners are sensitive to the way in which the
data they observe are sampled and are able to use the information that they are in a pedagogical
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setting. Intuitively, these results seem connected—being in a pedagogical setting changes the way in
which data are sampled. However, we are still left with the questions of why reasoning is affected by
pedagogical situations and what inferences are warranted in these situations. Answering these ques-
tions will require a deeper understanding of how the way in which samples are generated should
influence the conclusions drawn from those samples—the problem that we turn to in the next section.
3. Using Bayesian models to capture the effects of sampling

Bayesian models of cognition provide a framework within which the relationship between sam-
pling and learning can be investigated. Bayesian models formalize rational belief updating based on
observed data (Jaynes, 2003), and therefore provide a useful reference point for understanding human
learning. By indicating how a rational agent should reason, Bayesian models provide us with models of
human cognition expressed at Marr’s (Marr, 1982) computational level, and consistent with Ander-
son’s (Anderson, 1990) program of rational analysis (see for a review Chater & Oaksford, 1999). Up-
dated posterior beliefs depend on two components: prior knowledge, and knowledge about how the
data are sampled. A growing body of evidence suggests that human reasoning is consistent with the
predictions of rational models for a wide range of tasks (Griffiths & Tenenbaum, 2006) including learn-
ing conceptual structures (Anderson, 1991; Fried & Holyoak, 1984; Goodman, Tenenbaum, Feldman, &
Griffiths, 2008; Gopnik, Glymour, Sobel, Schulz, & Danks, 2004; Gosselin & Schyns, 2001; Griffiths &
Tenenbaum, 2005). However, people’s behavior need not be perfectly consistent with rationality for
these models to be useful. Computational-level models of cognition help to explain why people do
the things they do, even if people only approximate optimal performance. In these cases, the models
provide a useful staging point from which to investigate process-level effects, such as imperfect
memory (Anderson, 1990; Marr, 1982; Sanborn, Griffiths, & Navarro, 2010).

Formally, the problem of learning is a problem of updating one’s belief in a hypothesis, h, based on
some observed data, d. If degrees of belief are expressed in terms of probabilities, the solution to this
problem is provided by Bayes’ theorem,
PðhjdÞ ¼ PðdjhÞPðhÞP
h02HPðdjh0ÞPðh0Þ

; ð1Þ
where PðdjhÞ is the probability of observing (or sampling) the data assuming the hypothesis is true,
PðhÞ represents the learner’s prior beliefs in the hypothesis, and H is the set of all hypotheses under
consideration. Eq. (1) makes it clear that learning will depend on two distinct factors: a factor based
on what we believed before we saw the data, expressed via the prior PðhÞ and the hypothesis space H,
and a contribution based on how we think data are sampled given a hypothesis, expressed in the
likelihood PðdjhÞ.

One strength of this approach is that it allows straightforward integration of different kinds of sam-
pling assumptions through the use of generative models (Tenenbaum et al., 2006). Generative models
formalize the link between hypotheses and possible sets of observed data, by specifying which data
are likely given a particular hypothesis. Differences between generative processes such as random
sampling and sampling by a teacher can be formalized in this framework as different methods of
generating data.

Traditionally, models of learning have tended to overlook or downplay the role of sampling in
learning. In most models, there is no discussion of how data are generated (e.g. Medin & Schaffer,
1978; Nosofsky et al., 1994; Pothos & Chater, 2002; Rogers & McClelland, 2004). For instance, connec-
tionist models specify the structure of models and the rules for updating weights but generally no
mention is made of where the data come from or whether that even matters. Implicitly, it seems
the models assume that examples are some kind of relatively uninformative random sample,
otherwise it is hard to imagine how they would be successful in learning the structure of the world.
Even Bayesian approaches, though required by the formalism to specify how the data are generated,
have almost exclusively considered data to be the consequence of some random process (Anderson,
1991; Fried & Holyoak, 1984; Goodman et al., 2008; Gopnik et al., 2004; Griffiths & Tenenbaum,
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2005). In summary, though the generative process by which data are sampled plays a key role in learn-
ing, this issue has been largely overlooked in previous research.

3.1. Generative models as sampling processes

As summarized above, recent research has shown that even simple sampling assumptions can have
a powerful effect on learning. One distinction that has been introduced in the literature on concept
learning is the difference between weak sampling and strong sampling (Hsu & Griffiths, 2009;
Tenenbaum, 1999; Tenenbaum & Griffiths, 2001a). Weak and strong sampling correspond to two
different ways in which data can be generated, and correspond to different likelihood functions
assumed by the learner.

In weak sampling, examples are selected at random from the set of all possible objects and are then
labeled as to whether or not they are instances of the target hypothesis. The key idea is that in weak
sampling the process by which examples are selected is independent of the hypothesis; the hypothesis
is merely used to provide labels. Thus, the examples provide little information about the target
hypothesis—only whether this example is in or out.

In strong sampling, examples are generated at random from the set of examples that are true of the
hypothesis. Unlike in weak sampling, in strong sampling the process by which examples are selected
depends on the target hypothesis. Thus, when hypotheses tend to be small, positive examples are rare
and consequently strong sampling provides somewhat more information about the target hypothesis.

More concretely, consider the case where the hypothesis, h, is a specific concept, say ‘‘cat’’, and the
data, d, is one of the n objects in the room that could be labeled as an instance of this concept. In weak
sampling, the example is chosen uniformly at random from the whole set then labeled correctly, so
PðdjhÞ ¼ 1

n. Because any object is equally likely to be considered, the evidence is equally probable for
all hypotheses for which the data are consistent. This corresponds to a situation in which a speaker
is thinking of a ‘‘cat’’, chooses an object at random, such as a desk, then states whether the example
is a member of the concept (here, ‘‘no’’). As the learner, this example rules out some concepts such as
‘‘desk’’, ‘‘furniture’’, and ‘‘object’’, but is consistent with a vast set of other possibilities. In language
learning, a similar sampling process would apply if the learner heard a set of randomly generated sen-
tences and was told which sentences were grammatical and which were not (Hsu & Griffiths, 2009).

In contrast, in strong sampling the example is chosen at random from the set of examples consis-
tent with the hypothesis. Consequently, PðdjhÞ ¼ 1

jhj for any example consistent with h, where jhj is the
number of positive examples of the concept h in the set of n objects. Strong sampling induces a bias
toward smaller concepts because small concepts have fewer positive examples (Xu & Tenenbaum,
2007a, 2007b). In word learning, this corresponds to a situation in which a speaker chooses an exam-
ple at random from the things that happen to be cats and labels it as a ‘‘cat’’. Likewise, in language
learning, strong sampling corresponds to the assumption that the sentences one hears are generated
at random from the set of grammatical sentences in the language. Because strong sampling depends
on the hypothesis, it takes different forms for different kinds of concepts. For prototype concepts, the
underlying model may be a normal distribution, where data differ in the degree to which they are typ-
ical of the concept. In this case, strong sampling suggests that the data are drawn from the true model;
they are samples from the correct normal distribution. Regardless of the type of concept, a learner who
correctly assumes strong sampling will learn faster than one who assumes weak sampling.

Despite their differences, both strong and weak sampling assume that learners are provided with
data that are generated by a relatively uninformative random process. The idea of relatively uninforma-
tive, randomly-sampled data makes sense for some situations, but does not capture the informative,
intentional sampling process that underlies teaching. Rather than choosing uninformatively, a person
teaching a concept could be expected to choose data that tend to be good—data that help the learner to
infer the correct hypothesis—over other equally true examples. For rule-based concepts, all examples
consistent with the rule are equally in the concept, but not all are equally helpful. The best examples are
those that tend to eliminate alternative hypotheses. Thus, in teaching situations, the generative process
should depend on the true concept, as well as the other concepts that it might be confused with.

It seems that learning from pedagogically sampled data could be more powerful than either weak
or strong sampling. Indeed, this is why pedagogy has been implicated as an explanation of how people
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and cultures accumulate knowledge. However, to understand the contribution of pedagogy to human
learning, it is important to formalize what the problem of pedagogical reasoning is, and how pedagog-
ical situations could affect inferences.
4. A Bayesian model of pedagogical reasoning

We begin by sketching the problem of pedagogical sampling, then develop a computational model
of teaching, and learning from teaching, based on the idea that data are helpfully sampled. In pedagog-
ical settings, there are two parties, a teacher and a learner. The teacher is assumed to know the correct
answer and their goal is to choose data that facilitate learning (see Fig. 1). The learner is assumed to
know that the teacher is being helpful, and their goal is to infer which concept the teacher is trying to
teach them. Pedagogical reasoning thus involves two interrelated problems: the teacher needs to
choose data, and the learner needs to make an inference from those data. We formalize this process
via two assumptions: the first describes which data the teacher should choose to help a learner;
the second, how the learner should update their beliefs, given the data that the teacher has chosen
data to help them learn. We then describe how these two assumptions combine together to prescribe
reasoning by teachers and learners in pedagogical settings.

The teacher’s problem is deciding which data to present to the learner. In contrast with strong and
weak sampling, pedagogical sampling is purposeful, and depends on what the teacher thinks the learner
will infer given the data. To best achieve the pedagogical goal, the teacher should choose data d that will
maximize the learner’s belief in the correct hypothesis h. In the ideal case, the distribution from which
the teacher generates data, PteacherðdjhÞ, will thus spread probability evenly among those d that maxi-
mize the posterior belief of the learner in h; PlearnerðhjdÞ (Tenenbaum & Griffiths, 2001b, cf. who used a
similar approach to formally define the extent to which data d are representative of a hypothesis h).

Choosing only data that maximize PlearnerðhjdÞ may be ideal when the teacher has perfect
knowledge of the hypothesis space, prior, and likelihood used by the learner, but is not robust to
differences in inference that may arise as a consequence of differences between assumptions of the
teacher and the actual state of the learner. A more robust strategy is to select data that give the target
hypothesis high posterior probability, even if they are not the most representative examples. This
more robust strategy can be formalized through a ‘‘soft’’ maximization of the posterior probability:
Fig. 1.
to teach
infers w
PteacherðdjhÞ / ðPlearnerðhjdÞÞa; ð2Þ
where a captures how strongly the teacher tends toward maximizing the posterior. As a!1, this re-
duces to choosing the data that maximize the posterior. As a! 0, the teacher chooses uniformly
among data consistent with the hypothesis (i.e. those for which PðdjhÞ > 0), meaning that pedagogical
A schematic depiction of pedagogical reasoning. On the left, the teacher knows the correct hypothesis, which they intend
to the learner by choosing helpful data. On the right, the learner observes the data, and knowing the teacher’s intention,
hich hypothesis is being taught.
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sampling contains random sampling as a special case—the case where the teacher does not choose
data helpfully. When a ¼ 1, data are generated in direct proportion to the posterior probability they
give to the target hypothesis, implementing a kind of ‘‘probability matching.’’ For all of the results
in the paper, we fixed the value of a to 1. Response selection rules similar to Eq. (2) are common in
cognitive modeling, being an instance of the Luce choice rule (Luce, 1959).

Now consider the learner’s problem, updating their beliefs given the teacher’s data. In such a
situation, the learner knows that data will not be generated by a relatively uninformative process, but
instead are sampled by a helpful teacher. The learner can therefore assume that the data are sampled
according to Eq. (2). For a rational agent, belief updating will then be given, by Bayes’ theorem, by the
product of the prior probability and the likelihood consistent with this sampling assumption:
PlearnerðhjdÞ ¼
PteacherðdjhÞPðhÞP
h0Pteacherðdjh0ÞPðh0Þ

: ð3Þ
The learner’s posterior beliefs depend on their prior bias and the degree to which the data are likely to
be chosen by a helpful teacher given that hypothesis.

Because the behavior of the teacher and learner each depend on (their assumptions about) the
behavior of the other, Eqs. (2) and (3) form a mutually dependent system of equations. The distribution
from which a teacher should generate data, and which a learner should use as a likelihood, is the solu-
tion to the system of equations defined by substituting Eq. (3) into Eq. (2), with
PteacherðdjhÞ /
PteacherðdjhÞPðhÞP
h0Pteacherðdjh0ÞPðh0Þ

 !a

: ð4Þ
To understand this account of pedagogical reasoning it may help to consider one way of solving the sys-
tem of equations: fixed-point iteration. Imagine that you are the learner, and wish to update your be-
liefs. To do so you will need an estimate of the likelihood PteacherðdjhÞ of seeing the examples you are
given. You can estimate this likelihood by assuming the teacher is rational—Eq. (2)—but to do this
you need an estimate of the PlearnerðhjdÞ used by the teacher. If you assume the teacher assumes that
you are rational, you can use Eq. (3) as such an estimate; this requires an estimate of PteacherðdjhÞ, and
so on. This recursive reasoning will eventually no longer change—we then say that the process has iter-
ated to a fixed point and this fixed point will necessarily be a solution to the system of equations defin-
ing rational pedagogical reasoning. Thus we can understand the model as capturing the outcome of a
recursive mental reasoning process. However, we emphasize that rational pedagogical reasoning
describes the outcome of this process (or rather the solution to the system of equations) and it is entirely
possible that this reasoning may be implemented by a psychological process that does not require any
explicit recursion.

In general, there are multiple solutions to the system of equations. Thus, in principle there are mul-
tiple possible ways in which teachers and learners may satisfy rational pedagogical reasoning. A suf-
ficient condition for identifying a single solution is specification of an initial distribution for the
teacher’s selection of data. Iteration to a fixed point, in the way outlined in the previous paragraph,
transforms this initial distribution into a solution satisfying our assumptions for pedagogical reason-
ing. An intuitive choice for initial distribution often comes from the generative model which would be
used to describe the situation in a non-pedagogical context. In the cases we consider in the remainder
of the paper, we take the initial distribution to be that obtained from unbiased random sampling from
the generative model—weak sampling in the cases where negative evidence is possible and strong
sampling in cases where it is not.

One of the strengths of this pedagogical model is that it allows predictions for any concept for
which one can specify a reasonable set of hypotheses. Applying the model requires only specification
of the hypothesis space, the space of examples, a common prior belief distribution, and an initial
distribution for the teacher. Importantly, because sets of hypotheses are interrelated in different ways
for different concept learning problems, and the pedagogical model is sensitive to the hypothesis
being taught and the alternative hypotheses, it will generate different qualitative predictions for dif-
ferent domains. In the remainder of the paper, we describe and test the predictions of the pedagogical
model for teaching and learning for three kinds of concepts: rule-based, prototype, and causal.
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5. Pedagogical reasoning about rule-based concepts

Consider a simple example which we call the rectangle game: a game where the teacher thinks of a
rectangle on a board, and tries to teach that concept to a learner by choosing to label points inside and/
or outside the rectangle (cf. Tenenbaum, 1999). In the rectangle game, the learner’s job is to try to in-
fer, given the labeled examples chosen by the teacher, which concept the teacher is thinking of (i.e.
which rectangle). The concepts are rule-based: a point is either inside or outside the rectangle, and
all points inside (or outside) the rectangle are a priori equal.

Fig. 2 presents potential teacher and learner scenarios. In each case, there seem to be choices which
are obviously better than others. As a person trying to teach someone the rectangle in blue (top left),
the examples in the middle panel seem better than those on the right. Similarly, as a learner, given the
examples in the bottom left, the rectangle in the middle panel seems like a better guess than that on
the right. Notice that in both Figs. 2a and b, the middle and right panels are possible; however, our
intuition tells us that the middle panels are better guesses than the right panels.

For these rule-based concepts, data include both the location of a point and a label indicating
whether that point is inside or outside the concept. To define a generative model for rule-based con-
cepts, specifying the likelihood PðdjhÞ, we must include a method for generating both the locations of
points, y, and their labels, l. For simplicity, we assume a generative model in which points are chosen
at random, then labeled correctly. This corresponds to weak sampling.1 If the locations are chosen uni-
formly at random from the entire board, then any collection of m points that is labeled in a way that is
consistent with a hypothesis h has probability 1=Bm, where B is the area of the board. The hypothesis
space, H, includes all possible rectangles on the board, varying in size (both horizontal and vertical)
and location. Importantly, the addition of labels provides information about the correct hypothesis—
for each randomly-selected point, the label tells whether that point is inside or outside the true hypoth-
esis. Pedagogical sampling is then an issue of inferring which points will be most helpful for the learner.

Applying the model to the examples in the rectangle game, we can ask which examples are best for
teaching. In the case of two positive examples, the prediction is that the teacher will generally place
examples in opposite corners of the rectangle, and the learner will infer a rectangle such that the
examples are near opposite corners. To understand why this is a solution to Eq. (4), consider the recur-
sive reasoning described above (idealized to avoid complications of uncertainty): if the learner as-
sumes that the teacher will choose examples at opposite corners, then Eq. (3) implies that the
unique inference made by the learner is the tightest rectangle around two examples; if the teacher
assumes that this is what the learner is doing, then according to Eq. (2) the teacher will usually choose
examples in opposite corners of the true rectangle. In the case of one positive example and one neg-
ative example, the reasoning is similar: the learner assumes that the teacher will choose a negative
example close to the boundary of the rectangle, enabling the learner to rule out larger rectangles;
in turn the teacher will chose such examples under the assumption that this is how the learner will
reason. The model predictions are shown in Fig. 3 (see Appendix for full details about model imple-
mentation, as well as a worked example of how the model generates predictions). We test these pre-
dictions in the following experiment.
6. Experiment 1: Teaching and learning rule-based concepts

In this experiment, people played the rectangle game. People played the roles of teacher, choosing
the examples given a rectangle, and learner, guessing a rectangle given examples. In each case, partic-
ipants did not see a partner, but were informed of the pedagogical nature of the situation—that they
were choosing examples for teaching or that a teacher had chosen the examples they saw. We contrast
these situations with learning from non-pedagogically sampled evidence. In no case was a partner
(teacher or learner) present.
1 Alternatively, one could assume that a set of labels are chosen randomly, then the locations of the points are chosen
conditioned on the labels. This would correspond to strong sampling (modified to handle negative data). Both processes lead to
qualitatively similar answers for this case, and we are not committed to the psychological plausibility of this particular account.



Fig. 2. Two rectangle game scenarios. (a) Teachers are given a hypothesis (shown on the left) and choose which examples to
provide. The two panels on the right show two possible pairs of labeled points, which we refer to as examples. The first set of
examples are intuitively better than the second. (b) Learners are given labeled examples provided by a teacher (shown on the
left) and infer which hypothesis is correct. The two panels on the right show two possible hypotheses. The first hypothesis is
intuitively better than the second.
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We included three conditions: Teaching-Pedagogical Learning, Pedagogical Learning, and Non-Peda-
gogical Learning. In the Teaching-Pedagogical Learning condition, participants first played the role of tea-
cher, then played the role of learning from a teacher. In the Pedagogical Learning condition, participants
only learned from examples selected by a (not present) teacher. Finally, In the Non-Pedagogical Learning
condition, participants only played the role of learner, where they knew that examples were not se-
lected by a teacher. The three conditions allow us to explore which examples people choose to teach,
whether learning from ostensibly pedagogically-selected examples differs from non-pedagogically se-
lected examples, and whether there are effects of teaching first on later learning.

In our analyses, we will investigate how the pedagogical model predicts the qualitative and
quantitative patterns observed in the human data. For the teaching task, we will ask whether the
pattern of responses is random, as predicted by weak and strong sampling. We will also characterize
people’s preferred pattern of responses and ask whether the pedagogical sampling model correctly
predicts the pattern of examples generated by people. For the learning task, we will ask comparable
questions: are learner’s inferences consistent with the assumption that examples are
randomly-sampled? If not, do learner’s inferences reflect knowledge about the pedagogical nature
of the data?
6.1. Method

6.1.1. Participants
Seventy-three University of Louisville undergraduates participated in exchange for course credit.
6.1.2. Design
Participants were randomly assigned to either the Teaching-Pedagogical Learning condition

(n ¼ 18), the Pedagogical Learning condition (n ¼ 26), or a Non-Pedagogical Learning condition



Fig. 3. Predictions of the pedagogical model for Experiment 1: teaching with (a) positive examples and (b) negative examples.
The blue square represents the rectangle. (a) For positive examples, we collapse the data into two categories: corners and non-
corners, as indicated by the shaded areas. The pedagogical model predicts that examples should be in the corners of the
rectangle. (b) For negative examples, we collapse the data into three categories based on distance from the edge of the
rectangle: near, middle, and far, as indicated by the shaded areas. The pedagogical model predicts that examples should be near
the boundary of the rectangle. Note that because the rectangle was positioned randomly in the experiment, the thickness of the
near, middle, and far is relative to the distance between the boundary of the rectangle and the edge of the board. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(n ¼ 29). For the Teaching-Pedagogical Learning condition, the experiment consisted of two parts,
teaching and learning from a teacher, presented in that order. For the Pedagogical Learning condition,
the experiment consisted of two parts, observing the hypotheses (without choosing examples to
teach) and learning from a teacher, presented in that order. For the Non-Pedagogical Learning condi-
tion, the experiment consisted of two parts, observing the hypotheses (without choosing examples
to teach) and learning without a teacher, presented in that order. Across all three conditions, learners
saw trials with one, two, and three examples. Similarly, on different trials, teachers chose one, two, or
three examples. We focus our analyses on the trials with two examples, as these are where the model
predictions are the most interesting.

The rectangles used in the experiment ranged in both width and height. The game board was a
square. For the purposes of placing the rectangles, the board was divided into a 6 � 6 grid. The rect-
angles used in the experiment ranged from a minimum of 2

6 the size of the board to 5
6 the size of the

board. The location of the rectangle was randomized.
6.1.3. Procedure
Experiments were run on Apple Mac Pro desktop computers using MATLAB. Participants were

seated at a computer and told that they were going to learn about a game called the rectangle game.
In the Pedagogical Learning conditions, participants were told that in the rectangle game there is a tea-
cher and a learner. It is the teacher’s job to help the learner infer the correct rectangle by choosing
helpful examples, points that can be inside or outside the true rectangle. In the Non-Pedagogical Learn-
ing condition, participants were told that in the rectangle game the goal is to guess the position of the
rectangle.

In the Teaching-Pedagogical Learning condition, participants first participated in a teaching task. For
the teaching task, participants were shown a rectangle and asked to choose examples to help the lear-
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ner infer the location of the rectangle. The examples were chosen by clicking on the screen. A green
circle automatically appeared if the click was inside the rectangle, and a red X if the click was outside
the rectangle. There were 30 rectangles for which participants chose two examples—3 of each size. The
positions and ordering of the rectangles were randomized.

In the Pedagogical Learning and Non-Pedagogical Learning conditions, participants were shown the
same rectangles as in the teaching condition and were asked to click anywhere on the screen to ad-
vance to the next rectangle. A pause was inserted to ensure that each rectangle appeared on the screen
for at least .5 s.

In the learning task, participants in the Pedagogical Learning conditions were shown labeled exam-
ples. Learners were told that the examples were chosen by a teacher who was trying to help them to
infer the correct rectangle. Participants in the Non-Pedagogical Learning condition were told that they
could click twice on the board to ask a teacher whether those points were inside the rectangle.

After observing the labeled examples, participants in all conditions were asked to infer the correct
rectangle by clicking on the screen and dragging with the mouse. In the Pedagogical Learning condi-
tions, examples were generated based on a small set of patterns to reflect the possibilities given the
hypotheses, i.e. positive pairs are more likely to be close together than negative pairs, and mixed pairs
are relatively unconstrained. For mixed pairs, examples were chosen to differ by between 0

6 and 4
6 the

size of the board on the x and y dimensions. (Examples were constrained such that they could not dif-
fer by 0

6 on both dimensions.) For positive pairs, examples were chosen to differ by between 0
6 and 3

6 the
size of the board on both the x and y dimensions. For negative pairs, examples were chosen to differ by
between 0

6 and 4
6 the size of the board on one dimension and 2

6 and 4
6 on the other. The basic patterns

were positioned randomly on the board. In the Non-Pedagogical Learning condition, participants’
choices appeared as black dots and after they picked both points, the black dots changed to green
O’s or red X’s. There were 36 pairs of examples in total (24 mixed, 6 positive, 6 negative). When par-
ticipants completed the task, they were debriefed and thanked.

6.2. Results & discussion

We will consider performance on the teaching task first, then the learning task. For the teaching
task, we will consider whether people’s data conform to the predictions of weak and strong sampling
or pedagogical sampling by separately analyzing the distributions of the positive and negative
examples.

Pedagogical sampling predicts that for positive examples, examples in the corners are more infor-
mative than examples in the middle. Both weak sampling and strong sampling predict that positive
examples are distributed uniformly at random. To make responses for different sizes of rectangles
comparable, we divided each rectangle into a 3� 3 grid. Grids were normalized based on the size
of the rectangle, so that the grid was finer for smaller rectangles than for larger ones. This allowed
us to ignore the size of the rectangle and focus on the relative position of the examples. Frequencies
of examples in each area of the grid were tallied, and collapsed into two groups of examples—corners
and non-corners—and the frequency per unit area was calculated. To account for the fact that some
people produced more positive examples than others, we computed the proportion of corner exam-
ples per unit area. Fig. 4 shows that people in the teaching task were more likely to choose positive
examples in the corners than in non-corners, Mcorner ¼ :87; Mnon�corner ¼ :13; tð17Þ ¼ 6:55; p < :0001
by one-sample t-test, consistent with the predictions of the pedagogical model.

For negative examples, pedagogical sampling predicts strong effects of distance—the most helpful
negative examples are those that are near the boundaries of the rectangle. Weak sampling predicts
that examples should be distributed uniformly at random, while strong sampling makes no prediction.
We analyzed people’s choices by classifying examples based on the relative distance from the bound-
ary of the rectangle to the outside of the board. We divided the area from the boundary of the rectan-
gle to the edge of the board into three bins (see Fig. 3). Because the rectangles were randomly
positioned, the width of these bins depends on the distance between the boundary of the rectangle
and the edge of the board. To test whether people were more likely to choose examples near the
boundaries, for each person, we computed the frequency of examples that were near the rectangle
(shaded with the darkest gray; see Fig. 3), middle (the next ring), and far (the outer ring shaded with



Fig. 4. Results from the Experiment 1 teaching task divided into positive examples (left) and negative examples (right). Error
bars represent two standard errors here and throughout the paper. When choosing positive examples, people overwhelmingly
chose examples in the corners, as predicted by the pedagogical model. When choosing negative examples, people
overwhelmingly chose examples near the boundaries, as predicted by the pedagogical model.
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the lightest gray) per unit area, and converted to proportions per unit area to control for different
numbers of negative examples produced by different participants. The results are shown in Fig. 4, right
panel. The results show that people were more likely to choose negative examples that were near the
boundaries of the rectangle, Mnear ¼ :97; Mmiddle ¼ :03; Mfar ¼ 0; Fð1;15Þ ¼ 355:8; p < :0001 by one-
way, repeated measures ANOVA.2 These results are consistent with the predictions of the pedagogical
model.

Pedagogical sampling predicts that learners should know the strategies that the teacher will use to
teach different concepts. Therefore, if learners use pedagogical knowledge to guide inferences, we
expect learners should draw rectangles that recover the patterns observed in the teaching data. Weak
sampling predicts that positive examples should be randomly distributed with respect to the rectan-
gles inferred by learners. Fig. 5a shows the proportion of examples per unit area in the corners of
learners’ inferred rectangles for cases with two positive examples, for each of the three conditions.
The Teaching-Pedagogical Learning and the Pedagogical Learning conditions show significantly more
corner examples per unit area, tð17Þ ¼ 7:96; p < :001 and tð25Þ ¼ 5:86; p < :001, as predicted by
the pedagogical model, while there was no significant difference in the Non-Pedagogical Learning con-
dition, tð27Þ ¼ 1:02; p ¼ :32. These results are consistent with the interpretation that learners
understand the difference between pedagogical and non-pedagogical situations, and use this
knowledge to guide inferences.

Fig. 5b shows the results for positive examples where one example was positive and one example
was negative. The results show a divergence between the Teaching-Pedagogical Learning condition and
the Pedagogical Learning condition. The Teaching-Pedagogical Learning condition shows higher propor-
tion per unit area in the corner, tð17Þ ¼ 1:76; p < :05 by one-tailed test, but the Pedagogical Learning
condition shows the opposite pattern, tð25Þ ¼ �2:21; p < :05, like the Non-Pedagogical Learning
condition, tð28Þ ¼ �7:39; p < :001. This suggests that going through the teaching trials first may have
had an effect on pedagogical learning, an issue that we return to in the General Discussion.

Turning to the negative examples, we collapsed the pairs of negative examples with the mixed neg-
ative examples because there were no differences in the pattern of results. The pedagogical model pre-
dicts that negative examples are more likely to be near the boundary of the rectangle than they are to
be middle or far, and that middle and far should be approximately similar (see Fig. 3c). Fig. 5c shows
the results. The Teaching-Pedagogical Learning and the Pedagogical Learning conditions both show the
predicted pattern of results, Fð1;36Þ ¼ 81:21; p < :0001 and Fð1;52Þ ¼ 36:08; p < :0001 by planned
contrast with weights 1, �.5, and �.5, and the Non-Pedagogical Learning condition does not,
Fð1;58Þ ¼ 3:22; p ¼ :16, as predicted.

Together these results show that the pedagogical model provides good fits to human data in rule-
based concept learning. The non-pedagogical scenario shows that the qualitative effects predicted by
the model and observed in the data are not the result of simple perceptual preferences; rather, people
appear to be sensitive to when pedagogical sampling applies.
2 Two participants produced no negative examples and were omitted from the analysis, dropping the number of participants
from 18 to 16 for this analysis.



Fig. 5. Learning results for Experiment 1: (a) two positive examples, (b) mixed data, positive examples, and (c) all negative
examples. In each case, the results from the Teaching-Pedagogical Learning (left), Pedagogical Learning (middle), and Non-
Pedagogical Learning (right) conditions are shown. The results for the Teaching-Pedagogical Learning and Pedagogical Learning
conditions match with the model predictions for positive and negative pairs, but the Pedagogical Learning condition deviates
somewhat in the case of the mixed data.
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7. Pedagogical reasoning about prototype concepts

The question of whether or to what degree concepts are rule-based is a contentious one and has
incited long-running debates in the literature. Many authors have argued that the classical view of
concepts as rule-based is untenable in the face of evidence that category membership appears to be
graded and category boundaries do not appear to be crisply defined (Posner & Keele, 1968; Rosch &
Mervis, 1975). As a consequence, many existing models of category learning are based on probability
density estimation, rather than inferring rules (e.g. Anderson, 1991; Ashby & Alphonso-Reese, 1995;
Fried & Holyoak, 1984; Griffiths, Sanborn, Canini, & Navarro, 2008; Nosofsky, 1986, 1991).

A strength of the pedagogical model is that it can by applied to different kinds of concept learning
tasks by implementing different spaces of hypotheses,H. For one-dimensional prototype concepts, we
can capture graded category membership with hypotheses that determine category membership
based on a probabilistic distribution. A simple choice is a normal distribution, where different hypoth-
eses, h 2 H, vary in their means, l, and a variances, r. An individual hypothesis is thus a pairing of a
mean and a variance, h ¼ fl;rg. The learner infers the mean and variance based on the data that they
observe.

Consider the prototype concept represented by the examples in Fig. 6. The examples are instanti-
ations of a concept based on line length, where the lines have a mean length and vary to some degree
around the mean. These examples have been sampled at random from the true concept and examples
near the mean are more likely than shorter (middle row, left column) and longer (middle row, middle
column) examples. This is the space of possible examples and observed data are selected from this set.
A generative model based on random selection from among these examples is then equivalent to



Fig. 6. Examples from a prototype concept based on line length. The frequency of each length is proportional to the probability
given the true mean and variance. In the teaching experiment, people received 27 examples of this kind, which represented
examples of a concept. Participants were asked to choose three examples to teach someone else the concept.

68 P. Shafto et al. / Cognitive Psychology 71 (2014) 55–89
sampling from the true hypothesis and the probability of generating data is proportional to the
probability of the data under the hypothesis, Pðdjl;rÞ.

Now, imagine a teacher who has a catalog of examples of the concept in Fig. 6 to choose from. Which
three examples will be most helpful for the learner? Because the possible examples are drawn from a
distribution, the optimal strategy for the teacher is to provide information about what a typical exam-
ple is, as well as the breadth of examples that they have observed. The teacher, therefore, would choose
examples that marked the center of the distribution and two examples that marked the extremes.

In contrast, consider the examples that would be chosen under strong sampling. Strong sampling
suggest that examples should be drawn randomly from the true concept. For prototype concepts, this
means drawing examples randomly from a normal distribution with the correct mean and variance.
These examples will be representative of the true distribution and would therefore tend to consist
of examples near the mean. If we were to draw many random sets of three and tracked which
examples were chosen, then by the law of large numbers, the distribution of sampled examples would
converge to the true hypothesis.

From the perspective of the learner, pedagogically chosen examples should allow more confident
inferences about the center and tighter inferences about the extent of the concept. Inferences about
the center of the distribution should be strong because the teacher would explicitly mark the mean
with an example, and chosen triads are predicted to be symmetric about the mean. In contrast, strong
sampling results in examples that are randomly sampled, and though good inferences about the mean
are guaranteed given enough examples, triads are more likely to be asymmetric resulting in greater
variance about the estimated mean. Because inferences are stronger from pedagogically sampled data,
learners’ subsequent generalizations should extend less broadly. In contrast, learners observing
randomly sampled data should generalize more broadly because they have greater uncertainty about
the true hypothesis.

8. Experiment 2: Teaching and learning prototype concepts

For the teaching task, participants were presented with a set of examples which vary on a single
dimension (see Fig. 6). The examples were concentrated around a mean value, with the number of
examples at each value varying based on proximity to the prototype. Participants were asked to
choose three examples with which to teach another person the concept. The predictions that result
from strong sampling and pedagogical model are shown in Fig. 7a and 7b (see Appendix for full details
about model implementation). The pedagogical model predicts that examples are most likely to



Fig. 7. Model predictions and empirical results for the prototype teaching task in Experiment 2. The figures show the
probability of choosing different triplets of examples. Examples have been binned into three groups: small, medium, and large.
(a) Strong sampling predicts that people would choose three medium-sized examples. (b) The pedagogical model predicts that
people would choose one small, one medium, and one large. (c) Approximately half of the participants chose one small, one
medium, and one large, as predicted by the pedagogical model.
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include one small, one medium, and one large example. Strong sampling predicts that examples are
most likely to include three medium examples.

For the learning task, the sampling of the examples (chosen by a teacher or randomly sampled) was
crossed with a cover story about whether the examples were pedagogical or not, resulting in four con-
ditions. Fig. 8a shows the model predictions. We expect people in the teacher cover story conditions
(cyan3 and green lines) to generalize less broadly than those in the random sampling cover story condi-
tions (blue and red lines). The residual differences between the curves reflect the fact that random samples
tend to have a smaller range than those chosen by the teachers, resulting in more narrow generalizations.

8.1. Method

8.1.1. Participants
Twenty-eight University of California, Berkeley, undergraduates participated in the teaching task

exchange for course credit. Eighty-four members of the community at the University of California,
Berkeley participated in the learning task, in exchange for either course credit or compensation of
$10/hr.

8.1.2. Stimuli
Stimuli were heavy black lines shown inside a thin black rectangle, on a white background. Each

line was 1.5 mm thick, and the rectangle was 31 mm wide and 29 mm high, with the line centered
3 For interpretation of color in Fig. 8, the reader is referred to the web version of this article.



Fig. 8. Model predictions and empirical results from the prototype learning task in Experiment 2. (a) The model predictions
indicate that generalizations in the Random/Teacher (RT) condition should be most restricted, followed by the Random/Random
(RR) and Teacher/Teacher (TT) conditions. The Teacher/Random (TR) condition should be the broadest. (b) The results from the
experiment show that inferences from the Random/Teacher are most restricted, followed by Random/Random and Teacher/
Teacher, and Teacher/Random conditions.
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vertically and extending horizontally, starting 1 mm from the left hand side of the rectangle. The
length of each line was generated from a normal distribution with a mean of 14.5 mm and standard
deviation of 3.5 mm. A total of 27 such stimuli were used. The resulting lines ranged in length from
8 mm to 22 mm, with a mean of 14.5 mm and standard deviation of 3.4 mm. Sample stimuli are
shown in Fig. 6. These stimuli were attached to cards 90 mm wide and 50 mm high in order to make
them easier to handle and to show to participants.

8.1.3. Design
For the teaching task, participants were shown the 27 stimuli and were allowed to choose three

examples to teach someone else about the distribution of line lengths.
For the learning task, participants were shown three examples of a novel category, and then asked

to evaluate whether a set of other items belonged to the category. Two factors were manipulated in a
between-subjects design: the sampling scheme used to generate the examples and the instructions
provided to participants about the way in which those examples were generated. Both factors had
two levels, corresponding to Random generation from the category and generation by an informed Tea-
cher. To manipulate the sampling scheme, random examples were generated by randomly choosing 12
sets of three examples (from the total 27 stimuli) and the teaching examples were 11 sets of three
examples chosen by participants in the teaching condition. The sampling schemes and instructions
were crossed to create four conditions: participants in the Teacher/Teacher condition saw three exam-
ples generated by a teacher and were told that a teacher had generated them, the Teacher/Random con-
dition saw three examples generated by a teacher but were told that they were randomly generated,
the Random/Teacher condition saw three examples generated randomly but were told that they were
generated by a teacher, and the Random/Random condition saw randomly generated stimuli and were
told that they were randomly generated.

8.1.4. Procedure
For the teaching task, the set of 27 stimuli were shuffled and laid out in front of the participant in

an array with three rows and nine columns. The participant then received the following instructions:
In this experiment, you will see a random assortment of ‘‘widgets’’—objects consisting of a rect-
angle with a line inside it. The rectangle is always the same size and the line always starts at the
same point, but the line varies in length. If you look closely, you can probably see that widgets are
more likely to have lines of some lengths than others. Imagine that you had to teach somebody
about the distribution of line lengths that one sees on widgets, but could only do so by showing
them three of the widgets in front of you. Which three widgets would you choose?
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Participants then selected three widgets from the array, and their choices were noted.
For the learning task, each participant was provided with basic instructions about the task, similar

to those used in teaching task:
In this experiment, you will see some examples of ‘‘widgets’’—objects consisting of a rectangle
with a line inside it. The rectangle is always the same size and the line always starts at the same
point, but the line varies in length. If you look closely, you can probably see that widgets are more
likely to have lines of some lengths than others.
The participant was then shown three examples of widgets, generated via one of the schemes out-
lined above. The 27 stimuli themselves were identical to those used in the teaching task. Participants
in the Teacher instruction condition received the following instructions:
The widgets in front of you were specially selected by a participant in a previous experiment of
ours. This participant saw all the objects that were widgets, and was asked to choose three wid-
gets specifically to teach somebody about the distribution of line lengths that one sees on wid-
gets. These examples should thus give you a sense of what makes an object a widget.
Participants in the Random instruction condition saw the following paragraph instead:
The widgets in front of you were sampled at random. The lines inside them are random samples
from the distribution of line lengths that one sees on widgets. These examples should thus give
you a sense of what makes an object a widget.
Finally, participants in both conditions received the following instructions about the task they
would perform:
We are going to show you some more objects, and we want you to tell us how likely it is that they
are widgets (that is, that the line inside the object is the right length for it to be a widget). For
each object, indicate on a scale from 0 to 10 how likely you think it is to be a widget, where 0
indicates DEFINITELY NOT a widget, 10 indicates DEFINITELY a widget, and 5 indicates that it
is equally likely to be a widget or not a widget.
Each participant was then shown a new set of nine potential widgets, in the same format as the
previous stimuli, ranging in length in uniform increments from 1 mm to 28 mm, in random order.

8.2. Results & discussion

To analyze people’s choices of examples, we will consider the distribution of which examples were
chosen, as well as the triads that people chose. To analyze the triads, we collapsed the 27 examples
into three bins based on their distance from the mean. The smallest six examples were considered
small (S). The largest six examples were considered large (L). The remaining fifteen examples were
considered medium (M). Fig. 7 shows the model predictions and results for the triplets of examples.
Strong sampling (Fig. 7a) predicts that examples should be drawn from the true distribution in pro-
portion to their probability—the three examples should tend to be medium-sized. In contrast, peda-
gogical sampling (Fig. 7b) predicts that examples should be chosen to emphasize the mean and
extent of the concept, resulting in one small, one medium, and one large. Nearly half of participants
chose triplets composed of one small, one medium, and one large (Fig. 7c). To quantify the differences
between the models, we computed the probability of the set of 28 triads under each model and com-
pared the model fits via a likelihood ratio test. The pedagogical model provided a significantly better
fit to the data than strong sampling, v2ð1Þ ¼ 69:04; p < :001.

Fig. 8 shows the model predictions and experiment results for the learning task. To test the predic-
tion that generalization should be broader under the random sampling cover story, we computed a
variance score for each participant by converting their responses into a probability distribution by
normalizing their ratings. These variances were then submitted to a 2� 2 ANOVA with sampling (ran-
dom or teaching) and cover story (random or teaching) as variables. As predicted, there was a main
effect of cover story, Fð1;80Þ ¼ 10:70; MSE ¼ :196; p < :005. There was also a main effect of sampling,



Fig. 9. The variances of predictions by the pedagogical model and people for Experiment 2. The vertical axis represents (a)
predicted variance and (b) observed variance in predictions (see Fig. 8). The errorbars represent one standard error of the
estimates. The abbreviations on the horizontal axes refer to the Teacher/Random (TR), Random/Random (RR), Teacher/Random
(TR), and Random/Teacher (RT) conditions, where the labels indicate how the examples were sampled, and what the learner was
told about how the data were sampled. The model predicts that the variances of the conditions should be ordered such that
TR > RR > TT > RT, consistent with the experimental results. Note that if people did not modify their inferences based on the
sampling process, we would expect that ðTR ¼ TTÞ > ðRR ¼ RTÞ. These results suggest that people’s inferences are sensitive to
the sampling process.
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Fð1;80Þ ¼ 6:41; MSE ¼ :196; p < :05, and no interaction, Fð1;80Þ ¼ 1:23; MSE ¼ :196; p ¼ :27 (see
Fig. 9 for plots showing the average variances for each condition).

Together, the results of teaching and learning task provide further support for the predictions of the
pedagogical model and the claim that people’s inferences differ in pedagogical and non-pedagogical
settings. The results of the teaching task showed that when teaching prototype concepts, people do
not choose examples randomly, but instead purposefully select examples that indicate the mean
and extent of the true distribution, consistent with the predictions of the pedagogical model. The
results of the learning task showed that people use knowledge of how data are sampled to guide their
inferences. In conditions where examples were ostensibly chosen by a teacher, people’s inferences
were less broad than in cases where the same examples were described as randomly sampled,
consistent with the predictions of the pedagogical model.
9. Causally-structured concepts

In this final section, we investigate the implications of pedagogical reasoning for inferences about
causally-structured concepts. Though formal models of causal knowledge are a relatively recent devel-
opment (Pearl, 2000; Spirtes, Glymour, & Schienes, 1993), they have taken on special prominence in
the concept learning literature (Gopnik et al., 2004; Griffiths & Tenenbaum, 2005; Waldmann,
Holyoak, & Fratianne, 1995). A variety of researchers have used Bayes nets to capture the causal
knowledge that supports reasoning (e.g. Rehder, 2003; Rehder & Hastie, 2001; Shafto, Kemp, Baraff,
Coley, & Tenenbaum, 2008).

Bayes nets specify how features of a concept are related and provide a generative model for the
values, v, of features, f. The standard relations, which we focus on in this experiment, are noisy-or
relations. Noisy-or causal relationships specify that causes are probabilistically sufficient for bringing
about their effects. These models are typically associated with two parameters. The first is a
background rate, which indicates how likely any individual feature will take the value v ¼ on due
to reasons that are not accounted for by the causal model. The second is a transmission rate, which
indicates the probability with which, when the node is on, it will cause its children (any node(s) at
the end of an arrow) to also turn on.

For example, consider the case shown in Fig. 10a. This structure, known as a common effect,
specifies how features of the concept are related: features f1 and f2 have a common effect, feature
f3. Under noisy-or causal relations, this means that either f1 or f2 can individually cause f3. Causal
structures specify dependence and independence relationships among features. In the figure, the fact
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that there is no arrow connecting features f1 and f2 indicates that they are a priori independent,
whereas features f1 and f3 are dependent, specifying the belief that f1 can affect f3 but not f2. In contrast
with prototype concepts, which typically assume that features are independent or simply correlated,
causal structures allow construction of hypotheses that capture directional causal relationships. For
example, flapping of wings and flying are not merely correlated features of birds, flapping of wings
can cause flying.

The equations in Fig. 10a demonstrate the implications of the causal structure for reasoning. The
expansion of the Pðf1; f2; f3Þ follows by the chain rule for probabilities. Because features f1 and f2 are
independent, this equation simplifies. Feature f2 does not depend on feature f1, and therefore we
can ignore feature f1 when assessing the prior probability of feature f2.

In addition to expressing directional probabilistic relationships, Bayes nets can be extended to sup-
port reasoning about intervention, resulting in causal Bayes nets. The doð�Þ operator expresses an
intervention from outside the causal network. This has the effect of setting the intervened variable
to a particular value, and breaking incoming causal links to that node. Fig. 10b shows one possible
intervention and the likely results. The equation shows how the probability of this state would be
evaluated, given the common effect hypothesis. The critical difference between evaluating the sce-
nario in Fig. 10a and 10b is in understanding how interventions are generated, for example assessing
the probability Pðdoðf1 ¼ onÞÞ.

Research on causal learning and reasoning has typically focused on learning causal relationships
among sets of three variables, as these represent the basic forms that are combined to create larger
causal networks. Fig. 10c shows the three basic cases, called common effect, causal chain, and
common cause. Each has a different characteristic structure and the implications of interventions
on variables differ for each case. For instance, in the case of the common effect structure, no single
intervention is likely to turn on all of the variables, while in the causal chain and common cause
structure, interventions on f1 will tend to turn all features on.

In the standard formulation of causal learning, learners observe interventions i and the resulting
values of the features v. Together these constitute the data, and the generative model gives Pðv ; ijhÞ.
The goal of learning is to infer the latent causal structure. That is, given the interventions and the
observed results, infer the causal structure that was most likely to have generated these data. In these
approaches, interventions are assumed to be independent and chosen at random, as in weak or strong
sampling, and the resulting values for the features are generated according to the causal model, h.
(a)

(b)

(c)

Fig. 10. Figure showing a hypothesis about the causal structure of a concept. (a) A common effect hypothesis where feature f1

or feature f2 can cause feature f3, with the probability of observing data given the hypothesis. (b) The probability of observing
data given the hypothesis and an intervention. (c) Three basic causal structure templates.
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If a teacher was allowed two interventions, which ones should they choose? The pedagogical model
can be used to generate predictions about which sets of interventions teachers will choose and the
inferences that learners will make based on pedagogical interventions (see Fig. 11 for predictions
and Appendix for full details about model implementation). For common effect networks, the answer
should be fairly clear—given two interventions, the teacher should intervene on feature f1 showing the
learner that feature f3 will likely turn on but feature f2 will not, and then intervene on feature f2 show-
ing that feature f3 will likely turn on but feature f1 will not. Similarly, for the causal chain, the model
predicts that the teacher will choose features 1 and 2. For the common cause, the situation is
somewhat more interesting, as there is not a pair of interventions that would fully disambiguate
the possibilities. The model predicts two possible strategies. The most likely is that the teacher will
intervene on feature f1 twice. Note that this is ambiguous: the data are consistent with both a common
cause and two causal chains. The second most likely is choosing feature f1, and then feature f2 or
feature f3. These are also both ambiguous between the common cause and causal chain cases.

Unlike previous cases, causal inferences from a teacher’s interventions are generally strong
whether the learner assumes the teacher is helpful or not. Consider the case of the common effect
structure. Given the teacher’s interventions on features f1 and f2 and the likely data that would be ob-
served, the inference to a common effect structure is relatively straightforward. However, knowledge
of the teacher’s intent is important in two kinds of situations: when evidence is ambiguous and when
surprising events occur. These cases are shown in Fig. 11b and 11c. The ambiguous cases revolve
around the common cause structure, where the data are consistent with both the common cause
and causal chain. If the teacher intended to teach the causal chain, then they would have chosen an
intervention that turned on all of the nodes, then one that turned on only the bottom two. Similarly,
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Fig. 11. Predictions of the pedagogical model for Experiment 3: (a) the Teaching condition and (b & c) the Pedagogical Learning
condition. Numerical labels in (a) correspond to the features shown in Fig. 10(b) and (c). The predicted probability of possible
causal structures for Pedagogical Learning from (b) two kinds of ambiguous data and (c) two kinds of surprising data. For the
cases in (b) & (c), random sampling predicts no differences.
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for the surprising events, the teacher’s intention can be used to infer the correct structure. Fig. 11c
(top) shows a case where the same intervention brings about two different results that are equally
consistent with a common cause and chain allowing one surprise event. However, the choice of the
same intervention twice allows the learner to infer that the intended structure must have been com-
mon cause. The complementary case is shown in Fig. 11c (bottom) where the choice of two different
interventions can be used to make the opposite inference.
10. Experiment 3: Teaching and learning causally-structured concepts

To test the model predictions, we contrasted pedagogical causal reasoning with non-pedagogical
causal reasoning in three conditions as in Experiment 1: Teaching-Pedagogical Learning, Pedagogical
learning, and Non-Pedagogical Learning.

10.1. Method

10.1.1. Participants
Eighty-six University of Louisville undergraduates participated in exchange for course credit. Par-

ticipants were randomly assigned to one of two conditions: Teaching-Pedagogical Learning (n ¼ 30),
Pedagogical Learning (n ¼ 30), or Non-Pedagogical Learning (n ¼ 26).

10.1.2. Design
The experiment consisted of two parts. In all conditions, participants saw different causal struc-

tures depicted on a computer and were allowed to familiarize themselves with them by intervening
on variable and observing the effects of their intervention. They then participated in the first part,
either a teaching task (in the teaching condition) or an exploration task (in the other conditions), fol-
lowed by the second part, a learning task.

10.1.3. Procedure
Participants were seated at a Apple Mac Pro desktop computer for the familiarization task and told

that they were going to learn about causal relationships between sets of three variables. Participants
saw three variables with novel names on the screen (e.g. ‘‘ziffing’’) arranged in a triangle shape. Ar-
rows between variables depicted causal relationships between variables. Experimenters explained
that by turning one variable on, participants could observe which other variables would likely turn
on. The experimenter also explained that causal relationships were probabilistic—sometimes causes
did not turn on effects and sometimes variables turned on for no reason. Participants were encouraged
to try setting different variables and to intervene multiple different times. In the Teaching-Pedagogical
Learning condition, when people were comfortable with the causal relationships, participants were
then asked to choose two different interventions to show a learner (who could not see the arrows)
how the variables were related. Participants did not observe the results of their teaching interventions.
Each individual participated in six trials of the teaching task in random order, with two trials for each
of three causal structures (common cause, common effect, chain). For each structure, the causal rela-
tionships between the three variables was randomly permuted to control for preferences among dif-
ferent orientations of the structures. In the Pedagogical Learning and Non-Pedagogical Learning
conditions, participants were asked to choose two interventions to try to discover how three variables
were related. They also saw a total of six trials.

When they completed the teaching task, participants moved to the learning task. The learning task
was conducted on paper. Each participant was given a booklet with ten scenarios. Each scenario in-
cluded two pictures. Each picture indicated an intervention, and for each intervention, which other
variables were on or off (the intervened upon variable was always on). Scenarios were presented in
four pseudorandom orders. In the Pedagogical Learning conditions, participants were told that the
interventions were chosen by a teacher, with the intention of helping them learn. In the Non-Pedagog-
ical Learning condition, participants were told that the interventions were chosen by someone who
was trying to figure out the causal relationships. Participants were reminded that because events were
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probabilistic, sometimes surprising things happen. For each scenario, after seeing the data, partici-
pants indicated which of 12 possible causal structures were most likely on a scale of 0� 100, with
0 indicating definitely incorrect and 100 indicating definitely correct. When participants completed
the task, they were debriefed and thanked.

10.2. Results & discussion

In the teaching task, the key question is which pairs of interventions people choose. The pedagog-
ical model predicts that certain pairs of interventions are better than others for each of the three cau-
sal structures (see Fig. 12). For the common effect condition, people’s choices were highly non-
random, v2ð5Þ ¼ 115:08; p < 0:001. The pedagogical model predicts that intervening on each of the
two causes is the best solution. People’s choices were strongly correlated with the predictions of
the pedagogical model, r ¼ 0:96. For the causal chain condition, people’s interventions were again
highly non-random, v2ð5Þ ¼ 124:32; p < 0:001, and were strongly correlated with the predictions of
the pedagogical model r ¼ 0:94. Similarly, in the common cause condition, the interventions that peo-
ple chose were highly non-random, v2ð5Þ ¼ 74:38; p < 0:001, and strongly correlated with the peda-
gogical model, r ¼ 0:97. These data show that people’s interventions were highly non-random and
that the pedagogical model accurately predicts which pairs people choose in order to teach a learner
about the causal structure.

For the learning task, people provided numerical ratings on a 0� 100 scale. To facilitate compari-
son with the model predictions, each participant’s responses for each question were converted into
probabilities by normalizing the ratings for each question, so that the ratings for the 12 causal struc-
tures summed to one.

Do learners make use of pedagogical situations to make stronger inferences? To test whether learn-
ers appreciate the implications of pedagogical situations, we turn to the cases where the models make
different predictions: the two ambiguous data questions, and the two surprising event questions. In all
cases, the model based on random selection is ambivalent about the best causal structure given the
data. In contrast, the pedagogical model predicts that learners’ inferences should reflect an under-
standing of the intent of the teacher, allowing learners to make confident inferences about which of
the causal structures the teacher meant to teach.
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Fig. 12. Results for the teaching task from Experiment 3. Bar charts showing the pairs of interventions chosen by participants in
the teaching task. Below the horizontal axis are the causal structures with the nodes labeled for reference. On the horizontal
axis are possible pairs and on the vertical axis is the proportion (as a probability) of choices.
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Fig. 13 shows the data from the two ambiguous cases. For the Teaching-Pedagogical Learning con-
dition, there were significant differences, tð88Þ ¼ 2:22; p < 0:05 and tð58Þ ¼ 4:21; p < 0:001. For
the Pedagogical Learning condition, there were significant differences, tð88Þ ¼ 5:11; p < 0:001 and
tð58Þ ¼ 2:98; p < 0:005. For the first case, the Non-Pedagogical Learning condition showed no signifi-
cant difference, tð76Þ ¼ 0:73; p ¼ 0:47. For the second case, there was a significant difference,
tð50Þ ¼ 2:24; p < 0:05. To test whether the differences in the Pedagogical Learning conditions were lar-
ger than that in the Non-Pedagogical Learning condition, we ran two 2� 2 ANOVA with condition as a
between-subjects variable and question as a within-subjects variable. If people in the Pedagogical
Learning conditions showed a larger preference for the common cause structure, then we would
expect a significant interaction between question and condition. We found that, indeed, people in
the Teaching-Pedagogical Learning condition showed a larger preference for the common cause
explanation, Fð1;54Þ ¼ 9:33; p < 0:01, as did people in the Pedagogical Learning condition,
Fð1;54Þ ¼ 3:88; p ¼ 0:054.

Fig. 14 shows the model predictions and experimental results for learning from surprising events.
In the Teaching-Pedagogical Learning condition, we found the differences predicted by the pedagogical
model, tð58Þ ¼ 2:19; p < 0:05 and tð178Þ ¼ 2:01; p < 0:05. In the Pedagogical Learning condition, we
found no differences, tð58Þ ¼ 0:40; p ¼ 0:69 and tð178Þ ¼ �0:63; p ¼ 0:53. In the Non-Pedagogical
Learning condition, there were no significant differences, tð50Þ ¼ 0:15; p ¼ 0:88 and
tð154Þ ¼ �0:51; p ¼ 0:61. As in Experiment 1, engaging in teaching appears to have affected pedagog-
ical learning.

Together these results suggest that people understand the implications of pedagogical situations
for teaching and learning causal structures and the pedagogical model captures the logic underlying
their inferences. When asked to choose interventions for the purpose of teaching a learner, people
choose the pairs of interventions that are predicted to be most helpful by the model. In learning
situations, people reason differently when examples are provided by a teacher. People capitalize on
their understanding of the teacher’s intention to help to disambiguate potentially uncertain situations.
For surprising events, having previously engaged in teaching facilitates pedagogical learning. In
Fig. 13. Model predictions and human data from the Teaching-Pedagogical Learning, the Pedagogical Learning, and Non-
Pedagogical Learning conditions for the two ambiguous scenarios in Experiment 3. The top row shows the case where the
teacher chooses the same node twice and all nodes turn on (as indicated in the picture to the left of the graphs). These data are
ambiguous between the common cause and the causal chain structures shown on the horizontal axis. The bottom row shows
the case where the teacher chooses one node resulting in all nodes turning on and a second node and no other nodes turn on.
These data are also ambiguous between the common cause and the chain structures.



Fig. 14. Model predictions and human data from the Teaching-Pedagogical Learning, Pedagogical Learning, and Non-Pedagogical
Learning conditions for the two surprising data scenarios in Experiment 3. The top row shows the case where the teacher
chooses the same node twice and all nodes turn on once, but not the second time. These data are ambiguous between the
common cause and the causal chain structures shown on the horizontal axis—each requires the failure of one causal link. The
bottom row shows the case where the teacher chooses one node resulting in all nodes turning on and a second node and all
nodes turn on again. These data are also ambiguous between the two the chains and the structures shown on the horizontal
axis.
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contrast, when told that the same data were generated at random, people’s inferences reflect the
ambiguity of the situation.

11. General discussion

We have presented a computational model of pedagogical reasoning, addressing which examples
teachers should choose to teach concepts and what inferences learners should make based on this pur-
posefully sampled data. The model predicts the examples that people will choose to teach different
hypotheses, and that people will draw systematically stronger and qualitatively different inferences
in pedagogical learning situations. We presented three experiments testing the predictions of this
model using the teaching games method. Each experiment investigated a different kind of concept:
rule-based, prototype, and causally-structured. Together the results of these experiments showed that
when teaching, the examples that people choose are well-predicted by the model. Similarly, in peda-
gogical situations, people’s inferences are predicted by the pedagogical model, while in non-pedagog-
ical situations, people’s inferences are instead consistent with predictions based on random sampling.
Taken together, the results suggest that people differentiate pedagogical and non-pedagogical
situations and the pedagogical model accurately captures inferences in pedagogical situations. In
the following, we connect these results to previous findings, then consider broader implications.

11.1. Connections to previous results

Our research builds on considerable research investigating learning concepts from examples, as
well as research investigating how explicit teaching might affect such learning. Specifically, we
consider relationships to previous research on learning, including research investigating learning from
positive examples and previous models of concept learning. We also consider connections to previous
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research on teaching by example, pragmatics, and order effects in learning. We conclude this section
by discussing connections to previous research on pedagogical reasoning.

11.1.1. Learning from positive examples
Our findings build on and extend results suggesting that word learning reflects an assumption that

sampling is constrained by knowledge of intentionality (Xu & Tenenbaum, 2007a, 2007b). In these
experiments, participants’ generalizations of the learned labels differed when the examples were cho-
sen by a teacher from when the examples chosen by an agent who was ignorant of the true meaning.
Consistent with these results, we found that people systematically differentiate between helpfully
sampled data and data sampled by an agent ignorant of the true concept across three qualitatively dif-
ferent learning problems. We also extend their results by showing that, when asked to choose exam-
ples for teaching, people choose data that are helpful to the learner. This is the key difference between
strong sampling and pedagogical sampling: the assumption that examples are sampled with the pur-
pose of helping the learner.

Differences between pedagogical sampling and strong sampling are somewhat less stark for learn-
ing. Our findings in the learning condition of Experiment 1 are broadly consistent with the qualitative
predictions of strong sampling, when strong sampling applies. For the case of two positive examples,
strong sampling also predicts that the inferred concept should be relatively constrained, though not as
strongly as the pedagogical model predicts.

Experiments 2 and 3 provides cases where the predictions of pedagogical and strong sampling di-
verge for the learning task. For Experiment 2, examples in both the random and the teaching condition
are drawn from the true concept, and therefore strong sampling does not make differential predic-
tions. Thus, the finding that people generalize less broadly in the teaching condition cannot be ex-
plained by strong sampling. Similarly, for Experiment 3 strong sampling predicts that interventions
should be chosen at random from the possible interventions with effects and therefore the interven-
tion itself provides no information about the underlying structure to the learner. But in pedagogical
causal learning, our evidence suggests that the teacher’s intent to help plays the critical role in disam-
biguating ambiguous and surprising data, as predicted by the pedagogical model.

The pedagogical model provides more accurate description of both teaching and learning by for-
malizing how teachers choose data to help learners. It is important to reinforce that the pedagogical
model is a generalization of random sampling and can therefore capture the same phenomena by
allowing that the teacher not choose data helpfully (setting a ¼ 0). An interesting extension within
this framework is learning whether an individual is helpful by inferring a value of a based on the data
they provide.

11.1.2. Previous results on teaching by examples
Though very few studies have investigated teaching by examples in well-controlled settings, two

notable examples exist, which demonstrate adult teaching of linearly separable concepts (Avrahami
et al., 1997) and children teaching in a property induction task (Rhodes, Gelman, & Brickman,
2010). We turn our attention to their results, and the relationship between the predictions of the ped-
agogical model and their results.

Avrahami et al. (1997) investigated adults’ teaching of linearly separable concepts. In these exper-
iments, people were presented with stimuli that varied on two dimensions, size of the semicircle and
the angle of a radial line in the semicircle (varying from acute to obtuse). They were taught one of two
kinds of categories: categories for which the boundary was defined in terms of a single dimension (e.g.
small semicircles) or categories for which the boundary was defined in terms of both dimensions (e.g.
small semicircles with an acute line). Notably, although these categories are rule-based, discriminat-
ing nearby exemplars is difficult. In the teaching task, people were shown a subset of the possible
examples and asked to choose examples to teach someone else the concept. Their results show that
people’s choices were systematic (see Fig. 15). People show a general preference for positive examples
and tend toward examples that are away from the boundary.

To test whether our model predicted a similar pattern of results, we implemented a version in
which the learner inferred the boundary in the presence of perceptual noise (using a logistic function,
see Reed, 1972). The results (see Fig. 15) show that there is a good qualitative fit between the



Fig. 15. Comparison of sets of three examples chosen in Avrahami et al. (1997) and the predictions of the pedagogical model. In
the experiment, participants were teaching linearly separable concepts using examples. The grid represents the possible
examples on each dimension; the black line indicates the boundary. Dots indicate examples that were available to use for
teaching. This task is notable for using rule-based concepts with perceptually confusable stimuli. Dark patches indicate
examples that were more likely to be chosen. The results show that people have a broad preference for positive examples, and
for examples that are away from the boundary. In the pedagogical model, we formalize learning a boundary between
perceptually confusable (noisy) stimuli as learning a logistic function. The logistic function captures the fact that because the
stimuli are noisy, the examples that are close to the boundary risk being confused with the other category. Though there are
quantitative differences, the pedagogical model captures the broad preference for positive examples, and for examples that are
away from the boundary.
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predictions of the pedagogical model and the results observed by Avrahami et al. (1997), with both
preferring examples that are far from the boundary and therefore less confusable. These results
provide further support for the pedagogical model as a model of teaching by example.

Rhodes et al. (2010) investigated six-year-old children’s teaching in a property induction task. In
their teaching task, children were told about a novel property (e.g. has a four-chambered heart) that
was true of a subset of animals (e.g. dogs). The children were then asked to choose a set of three exam-
ples by which to teach the concept, and were given the choice of three examples of a subset of the
concept (e.g. dalmations) or diverse set of examples (e.g. a golden retriever, a dalmation, and a collie).
As in the rectangle game, where the preferred positive examples are in opposite corners of
the concept, the pedagogical model predicts that a diverse set of examples is preferred for teaching
the concept. Rhodes et al. (2010) find that children were significantly more likely to choose the diverse
set of examples, suggesting that children understand the implications of different sets of examples for
teaching concepts.

11.1.3. Teaching versus communicating: connections to pragmatics
Considerable research in language has focused on how choice of utterances are related to infer-

ences of listeners (e.g. Brennan & Clark, 1996; Fussell & Krauss, 1989; Krauss, 1987), how people nego-
tiate common ground (e.g. Garrod & Anderson, 1987; Pickering & Garrod, 2004; Wilkes-Gibbs & Clark,
1992) and common reference (e.g. Brennan & Clark, 1996; Fusaroli et al., 2012; Voiklis & Corter, 2012),
and formalizing pragmatics via signaling games (Benz, Jager, & van Rooij, 2005; Frank & Goodman,
2012). Among the most closely related of these works is a recent paper by Voiklis and Corter
(2012), which investigated whether negotiating reference affected category learning. Participants
engaged in an paired interaction in which one described an object and the other predicted what cat-
egory the object was in based on the description. Participants engaged in multiple trials, alternating
roles with each trial. The results showed that participants in this dialogue condition learned the cat-
egories better than participants in a monologue condition (in which they only engaged in self-talk).

There are many similarities between our work and this literature, most notably the focus on how
people come to arrive at common beliefs. There are also a variety of ways in which our focus, and
teaching more generally, differs from communication. In our experiments, we have focused on cases
in which the goal is to select examples a priori. Thus, we have not focused on iterative process related
to negotiating how to refer. This reflects a difference between teaching and communication, namely
that the object of teaching is some objective truth, while the object of communication can be a great



P. Shafto et al. / Cognitive Psychology 71 (2014) 55–89 81
variety of things including to simply come to agreement (whether true or not). Consistent with this,
we have focused on natural signs—examples that have meaning—while the communication literature
most often focuses on arbitrary signs—such as words—for which meaning must be learned or negoti-
ated. Similarly, our model also differs from those proposed in the language literature on signaling
games. The focus of that work is on the communication of specifics while in ours the focus is on
teaching of generalities (Benz et al., 2005; Frank & Goodman, 2012). These are examples of how teach-
ing, and our experimental approach, differ from communication more generally; however, a more
precise formalization of how these two context are similar and different is an important direction
for future work.

11.1.4. Selecting examples to facilitate learning
Many researchers have noted that certain examples or orderings of examples could facilitate or im-

pede learning (Elio & Anderson, 1981, 1984; Goldstone & Sakamoto, 2003; Goldstone & Son, 2005;
Mathy & Feldman, 2009; Medin & Bettger, 1994; Stewart, Brown, & Chater, 2002). Aside from the fact
that data in our experiments were presented together, rather than ordered, our approach differs from
this research in two main respects. First, the pedagogical model highlights the effects of pedagogical
context in interpreting examples; we have shown that the very same data lead learners to different
inferences in pedagogical versus non-pedagogical situations. Second, our approach to facilitating
learning is derived from an analysis of the implications of social inferences—inferences about others’
knowledge and intent—for learners and their learning.

Similarly, heated debates continue in the education literature about the relative merits of direct
instruction (i.e. teaching) versus discovery learning. In this literature, direct instruction is commonly
perceived as facilitating learning by providing ‘good’ data (Dean & Kuhn, 2006; Kirschner, Sweller, &
Clark, 2006; Klahr & Nigam, 2004; Mayer, 2004; Rittle-Johnson, 2006). In related work, we have shown
that this common perception overlooks an important consequence of teaching that is predicted by the
pedagogical model—teaching not only shows what is true, but also provides information about what is
not true (Bonawitz et al., 2011). In this work, we show that preschool-aged children understand the
implications of teaching situations; they engage in less exploratory play after demonstrations by a
knowledgeable teacher, but not after observing the same data presented by a not knowledgeable
teacher. This provides another demonstration that learning depends on inferences about the demon-
strator’s knowledge and intent, and the consequences of these social inferences are predicted by our
pedagogical model.

11.1.5. Two aspects of pedagogical reasoning
Establishing a pedagogical context can have two different kinds of consequences for the assump-

tions that a learner might make. First, it can affect the learner’s expectations about the way in which
the data provided by the teacher have been sampled, with learners expecting that teachers will
provide informative data. Second, it can affect what kinds of concepts the learner might expect a tea-
cher to convey. Our model of pedagogical reasoning has focused on the first of these two aspects of ped-
agogical reasoning, examining how people sample data in order to teach concepts. However, the second
aspect of pedagogical reasoning could be equally important in determining the conclusions that learn-
ers reach, and in establishing a role for pedagogy in supporting cumulative cultural evolution.

Csibra and Gergeley (Csibra & Gergely, 2009, 2006; Topal et al., 2008) have focused on this second
aspect of pedagogical reasoning. Their proposal is that when children are engaged in a pedagogical
context through ostensive cueing, an assumption of semantic generalizability of information is en-
gaged (Csibra & Gergely, 2009). For example, Topal et al. (2008) explain the A-not-B task results by
arguing that the child assumes that the A bin is ‘for toys’—that is, that the pedagogical situation
was intended to teach information about the kind of thing that the A bin is, as opposed to simply indi-
cating that the toy is in the A bin. Under this proposal, pedagogy provides a mechanism for commu-
nicating information about kinds and their properties, dealing with the challenge of communicating
such generalizations.

Our sampling-based approach and Csibra and Gergely’s work represent different, complementary
approaches to the same problem. From our perspective, their proposal that pedagogical situations
engage an assumption of semantic generalizability is a kind of context-sensitive prior (Shafto, Kemp,
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Baraff, Coley, & Tenenbaum, 2005, 2008) that applies in pedagogical settings. In contrast, the sampling
assumptions we have emphasized influence the likelihood assumed by the learner, since they
determine the relationship between hypotheses and data. However, these two aspects of pedagogy
can be brought together quite naturally within the more general Bayesian framework that we have
used to develop our account. Bayes’ rule provides a way to combine this prior expectation of general-
izability with the assumption that the teacher will choose data to help the learner infer the intended
concept. Investigations of how to implement a prior on semantic generalizability and the implications
of combining an assumption of generalizability with the assumption of pedagogical sampling are
interesting directions for future research.

11.2. Implications

We consider three implications of our results. First, we consider the implications of the order
effects observed in Experiments 1 and 3. Second, we discuss the implications of these results for
debates on learning more generally, which have mainly focused on the representation of concepts.
Finally, we discuss implications for cultural evolution and conclude with a brief summary.

11.2.1. Effects of teaching first on later learning
One interesting aspect of the current results is the finding that participants who played the role of

teacher first made inferences that more closely approximated the model predictions later. In Experiment
1, participants in the Pedagogical Learning condition showed two of the three predicted effects, while par-
ticipants in the Teaching-Pedagogical Learning conditions showed all three of the predicted effects. In
Experiment 3, participants in the Pedagogical Learning condition showed two of the four predicted ef-
fects, while participants in the Teaching-Pedagogical Learning condition showed all four of the predicted
effects. Importantly, in both experiments, control conditions showed none of the predicted effects. To-
gether, these results suggest that engaging in teaching first facilitated pedagogical learning.

One possible explanation for this result is that the underlying cognitive mechanisms provide solu-
tions that approximate the predicted responses. The model suggests recursive reasoning where the
learner must consider what conclusions the teacher would use for possible concepts (and so on). If
we imagine this recursive reasoning as a process-level account, it becomes clear that it is extremely
demanding and the resource demands grow with the recursion depth (cf. Colman, 2003; Hedden &
Zhang, 2002). One way to deal with these demands is to use approximate or pre-computed values in-
stead of recursing. In particular, if a participant first has experience in the role of teacher, she may
store some representation of what examples are likely to be used to convey different concepts, and
then when put in the role of learner she may use this ‘‘cached’’ information rather than computing
the full recursion on the fly. If this is right, we expect participants to be more optimal to the extent
that they have previous experience teaching in a given domain. An important direction for future
research is considering possible algorithmic-level approximations that adapt based on experience
and whether they explain these effects.

11.2.2. Concept learning as an interaction between concept representation and sampling
Previous approaches to understanding concept learning have focused on how representational

commitments provide biases for learning. Connectionists have focused on how the conjunction of
simple network structures and connection weight update rules can allow effective extraction of infor-
mation from observed data (Rogers & McClelland, 2004). Simplicity-based approaches have explored
how a generic approach based on compressing redundant information out of data sets can learn
predictive relationships (Pothos & Chater, 2002). Similarly, the theory-based Bayesian approach has
explored how learning structured generative models of observed data can allow meaningful learning
from relatively minimal data (Tenenbaum et al., 2006). The overarching commonality across these
approaches is the search for generic learning biases that allow a learner to generate predictions about
new situations based on relatively limited data.

A contribution of our work is in highlighting the influence of how data are sampled on learning (see
also Tenenbaum, 1999; Xu & Tenenbaum, 2007a, 2007b). One of the strengths of the Bayesian
approach is that it has, in part, motivated these questions and provides a natural framework in which
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to integrate information about how data are sampled with our prior beliefs to produce new beliefs
about the world. It is not obvious to us what the most natural way of integrating knowledge about
sampling in either connectionist or simplicity-based approaches to learning.

The interaction between sampling and knowledge representation turns out to be non-trivial, a point
that may not be obvious when one focuses on randomly (weak) sampled data. Consider, for example, the
problem of learning in the rectangle game. Assuming randomly sampled data, it will take a very long
time on average to infer the correct answer. Indeed, to arrive at the correct conclusion with complete
certainty requires six particular examples—four negative examples that mark the outside boundaries
of the concept, and two positive examples to mark the interior boundaries—and it could take quite a long
time to get those examples by random chance. In contrast, for a pedagogical learner receiving helpfully
sampled data, a strong inference can be made on the basis of only two examples. Similarly, in both pro-
totype learning and causal learning, learning can be expedited by understanding which data a teacher is
likely to sample. In each of these domains, qualitatively different patterns of evidence are expected
based on which hypothesis is being taught and the relationship among different competing hypotheses.

Teaching is not the only kind of situation in which an understanding of how data are sampled may
play a role in learning. Many researchers have noted that people can learn by observing other’s actions
(Baldwin, 1993; Gergely, Bekkering, & Kiraly, 2002; Lyons, Young, & Keil, 2007; Meltzoff & Moore,
1977; Shafto, Goodman, & Frank, 2012). Recent research has formalized how inferences about the goal
of another agent can facilitate causal learning (Goodman, Baker, & Tenenbaum, 2009). Learning from
goal-directed actions differs from learning from pedagogically sampled data in the strength of the
inferences that they afford (Shafto et al., 2012). Consider a causal learning scenario, as in Experiment
3. If the agent has the goal to turn on one of the variables, then the most direct course of action is to
turn it on. Similarly, if the agent’s goal is to turn on some pair with a single action, then they should
intervene on the cause, rather than the effect. These situations provide information about the relation-
ship between interventions and effects; however, they do not provide the kind of disambiguating
information that is predicted by the pedagogical model and observed in our experiments. Pedagogical
situations afford stronger inferences because the teacher’s goal is to teach the hypothesis to the lear-
ner, and this leads the teacher to sample data that disambiguate different possible hypotheses.

11.2.3. Implications for cultural evolution
Csibra (2007) has argued that a uniquely human ability to understand pedagogical situations al-

lows us to accumulate knowledge over generations, an ability that separates us from even our closest
evolutionary relatives. He argues that not only do people naturally teach, thus providing better data to
learn from, but learners naturally understand the implications of pedagogical situations for learning.
We have presented a computational framework that formalizes which examples people should choose
and the inferences that learners should infer in pedagogical contexts. The model formalizes the claim
that simply receiving good data does not capture all that pedagogical situations have to offer—when
learners are aware that they are in pedagogical situations, they can make stronger inferences than if
they are unaware that the teacher is being helpful. Each of our experiments provides evidence that
learners in pedagogical situations use the knowledge that teachers are being helpful to guide their
inferences, and those inferences are stronger than those that are warranted based on the data alone.

It is an open and important question whether this kind of pedagogical reasoning supports the accu-
mulation of knowledge through generations. Recent research has formalized the cultural evolution
within a Bayesian framework (Griffiths & Kalish, 2007) and developed experimental methods for test-
ing the model predictions. Their results confirm that in standard learning settings, where data are ran-
domly sampled, knowledge is not accumulated over generations. These methods of studying cultural
evolution, together with our model and experimental methods, provide formal computational and
experimental methods for testing whether pedagogical situations allow for the accumulation of
knowledge over generations.

11.3. Conclusions

Understanding how explicit teaching affects learning is a critical issue in the study of human learn-
ing. We have presented a computational model of pedagogical teaching and learning, and evidence
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from three experiments suggesting that the model predicts people’s behavior in teaching and learning
situations. We have focused on cases of simple concept learning, cases that are much simpler than
those that may be encountered in educational contexts. A critical issue for future work will be gener-
alizing these results to more ecologically valid domains and where the problem of learning includes
the possibility of encountering novel concepts. These results provide a first step toward understanding
how pedagogical situations affect learning, and present a new framework within which we may ex-
plore implications for education and cultural evolution.

Appendix A

To formalize the model, we must specify four basic elements that capture the experimental tasks.
First, we must specify the hypothesis space,H, the set of possible hypotheses that one may have about
the true concept. Second, we must specify the prior probabilities of each hypothesis, PðhÞ; throughout,
we have designed situations in which all hypotheses are equally plausible to focus on the effects of
sampling. Third, we must specify the set of possible data, D; the examples the teacher may choose.
Fourth, we must specify the likelihoods, PðdjhÞ, the probability of randomly sampling each possible da-
tum under each possible hypothesis, assuming random sampling.

Given these elements, the model can be used to generate predictions about the behavior of teachers
and learners. In the following, we first work through an illustrative example in detail, specifying the
four elements and working through how the model generates predictions. We then provide modeling
details for each of the experiments. Because the experiments include many hypotheses and many pos-
sible data, we cannot work through these in the same detail as the example; instead, we provide the
elements necessary to implement the models in each case and describe how the predictions in the fig-
ures were derived.

A.1. Computational modeling: An illustrative example

To illustrate how the pedagogical model derives predictions, we will describe in detail a simpler
case of the rectangle game, a line game. In the line game, concepts correspond to line segments on
an interval. Fig. 16 shows a simple version of this problem, where the hypothesis space consists of
6 possible hypotheses (see Fig. 16a). We assume a uniform prior over the hypotheses, i.e. PðhÞ ¼ 1

6.
Assuming data, D, are labeled and chosen in pairs, there are 12 possible examples (see Fig. 16b).
The likelihood, PðdjhÞ, is based on sampling examples uniformly at random from among those consis-
tent with a given hypothesis (see Fig. 16c).

To see how the model generates predictions, we begin be considering what would happen if the
data were sampled randomly, PðdjhÞ (Fig. 17a). For rule-based concepts, random sampling implies
choosing among the examples that are consistent with the hypothesis with uniform probability. Con-
sider h3, there are three data that are consistent with h3 : d1; d5, and d9. Thus, the probability of choos-
ing each is 1

3 � :33. Indeed, for all of the hypotheses, there are exact three data consistent, though
which data are consistent varies by hypothesis.

The problem from the perspective of the teacher is to choose the two best examples with which to
teach the target concept (here, h3). Eq. (2) suggests that the teacher should choose the examples that
tend to maximize the learner’s belief in the correct hypothesis. Eq. (2) tell us how to identify these
examples, as well. For example, to compute the probability of choosing d1, we must first find the
probability of the learner inferring the correct hypothesis, given this example, PðhjdÞ. Assuming that
hypotheses are equally likely a priori, Pðd1jh3Þ � Pðh3Þ ¼ 1

3� 1
6 � :33� :17 � :056. The denominator

depends on other hypotheses that are consistent with the data. The data d1 are only consistent
with two hypotheses, the intended hypothesis h3, and h2. Because the prior probability of all
hypotheses are the same and the data are all selected at random from three possibilities, the
Pðd1jh2Þ � Pðh2Þ ¼ Pðd1jh3Þ � Pðh3Þ. Putting the pieces together,
Pðh3jd1Þ ¼
Pðd1jh3Þ � Pðh3Þ

Pðd1jh3Þ � Pðh3Þ þ Pðd1jh2Þ � Pðh2Þ
� :056
:056þ :056

¼ :5:



Fig. 16. Illustration of the line game. (a) The possible hypotheses are indicated by blue lines, where areas without the line are
outside the concept. (b) The possible data are combinations of two labeled examples, with green circles indicating areas inside
the hypothesis and red Xs indicating areas outside the hypothesis. (c) The possible data for a specific hypothesis, h3. For this
hypothesis, only some data are possible: d1;d5, and d9. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 17. Predictions of the pedagogical model for a simple case of rule-based concepts. The matrices represent the probability of
choosing the data given the hypothesis, and therefore each column sums to one. Zeros are omitted for clarity. (a) The probability
of sampling data given hypotheses assuming random sampling. (b) The probability of sampling data given hypotheses after one
step of the pedagogical model. (c) The optimal probability of sampling data for each hypothesis according to the pedagogical
model.
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Note that different data lead to different conclusions. For instance, a learner who observed d5 would
infer h3 with probability 1, because there are no other hypotheses that are consistent with d5.

Now consider which of these data the teacher should choose, PteacherðdjhÞ. Eq. (2) suggests that
teachers should choose among the data that are consistent with the hypothesis, favoring those that
are more likely to lead the learner to the correct inference. Here, a teacher would choose among
d1; d5, and d9. The probability of a correct inference given d1 and d9 is .5, while the probability of a
correct inference given d5 is 1. Following Eq. (2),
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Pteacherðd5jh3Þ ¼
Plearnerðh3jd5Þ

Plearnerðh3jd1Þ þ Plearnerðh3jd5Þ þ Plearnerðh3jd9Þ
¼ 1
:5þ 1þ :5 ¼ :5
(see Fig. 17b).
If both the teacher and learner are privy to this reasoning strategy, then one iteration is not enough.

If the learner knows that the teacher will be helpful, then the teacher would want to reason about
what the learner will do, given this information. Thus, the optimal choice of examples is based on
the stable solution to the system of equations; essentially this amounts to running the computations
described in the previous paragraphs over and over until the answer is (nearly) stable (see Fig. 17c).

This sampling strategy outlines a generative process for choosing data that optimizes the learner’s
chances to invert the process to guess the correct hypothesis. These results are for a teacher that
chooses probabilistically, i.e. for whom a ¼ 1, and who assumes that examples. Note that pedagogical
sampling predicts two basic effects that can be seen in Fig. 17 and Experiment 1: positive pairs should
mark the boundaries (see h3) and negative examples should be near the boundaries (see h1).

A.2. Computational details: Experiment 1, Rule-based concepts

As mentioned above, there are four basic pieces required to formalize the model: hypothesis space,
priors, possible data, and likelihoods. For the rectangle game, we approximate the full reasoning prob-
lem by discretely approximating the game board with a 6� 6 grid. The hypothesis space is then every
rectangle from 2� 2, through 2� 5 up to 5� 5, a total of 196 rectangles. We assume a uniform priors
over the possible hypotheses, i.e. PðhÞ ¼ 1

196 for all rectangles. We consider pairs of labeled examples.
The set of possible single data points include each of the 36 locations on the 6� 6 grid. This gives
36� 35 ¼ 1260 pairs and 22 � 1260 ¼ 5040 possible labeled pairs. The likelihoods are based on
random sampling from among the labeled pairs that are consistent with a given hypothesis. As in
the example above, each hypothesis is consistent with the same number of labeled pairs.

Although there are considerably more hypotheses and data, the model predictions are qualitatively
similar to those in the example above. Specifically, focusing on positive examples, because examples
in opposite corners of the rectangle rule out the largest number of alternative hypotheses, these are
the examples that the model predicts teachers will choose. Similarly, turning to negative examples,
because examples that are just outside the rectangle eliminate the most possible alternatives, these
are the examples that the model predicts teachers will choose. Because learners reason about teachers’
behavior, the model predicts that learners should infer rectangles in which positive examples are in
the corners and negative examples are on the boundaries. To generate the predictions for the teaching
task, we averaged the predictions based on the four approximately centered 3� 3 rectangles. Because
learners reason about the teachers choices, the model predicts the same qualitative effects for
learning.

A.3. Computational details: Experiment 2, Prototype concepts

As for the other experiments, to model Experiment 2, we must specify the possible hypotheses, the
priors, the possible data, and the likelihoods. Recall that in the teaching task, participants chose three
examples from among 27 line segments whose lengths were sampled from a normal distribution. In
the learning task, participants were shown three examples and they rated a series of 9 examples vary-
ing in length in uniform increments, on whether they were from the same category. To capture this in
the model, we start with a collection of 9 uniformly-spaced examples. The set of possible data includes
all possible triplets of 9 (where order does not matter), 165 examples. We derive the possible hypoth-
eses from the possible examples. The possible means were set to correspond to all possible means of
three stimuli. The standard deviations were set to correspond to the one-half of the standard devia-
tions of all possible sets of three examples. (Standard deviations of 0 were set to .01.) Thus, there were
a total of 165 mean and standard deviation pairs. The prior probabilities, PðhÞ, are assumed to be uni-
form, 1

165. The likelihood is a discretized Gaussian, where the probabilities are assigned for each of the 9
segments based on the particular mean and standard deviation and renormalized to ensure that they
sum to 1. Probabilities for triplets are computed by assuming examples are selected independently.
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To generate predictions for the teaching task, the examples were binned with the smallest 2 seg-
ments called small, the largest 2 segments called large, and the remaining 5 called medium. The prob-
abilities for a given triplet (e.g. SSS) by summing the probabilities of all examples that fell in that
category. We generated predictions based on examples generated from the true distribution by either
strong sampling (random condition) or pedagogical sampling (teaching condition). Participants’
choices were contrasted with the predictions of the two models in Fig. 7.

The learning task included manipulations of the examples provided (Teacher or Random), as well as
the learners’ beliefs about the examples (Teacher or Random). Thus, to model the learning task, we
must model the choice of examples and the learner’s beliefs about the choice of examples. We then
must generate the learner’s ratings, given the data they observe and the inferred probability of
hypotheses. To model choice of data and inferences, posterior beliefs were computed based on the
learner’s assumption that the data were strong sampled (random cover story) or pedagogically sam-
pled (teaching cover story) by marginalizing over the data that were chosen according to the true sam-
pling process. Predictions for the 9 data points were then generated using the posterior predictive
distribution—by computing the probability of randomly choosing that data point from each hypothe-
sis, weighted by the probability of that hypothesis given the observed data. To reflect uncertainty in
people’s perception of the line lengths, predictions were generated based on uncertain estimates of
the true length. Uncertainty was implemented as a normal distribution centered on the example with
a standard deviation 1.5 times the difference between examples. The perceptual noise does not affect
the qualitative ordering of the model predictions, but does increase the variance of predictions across
all four conditions. For Fig. 8, the probabilities were then scaled such that the largest value was one (by
dividing all values by the maximum). The variances in Fig. 9 were also derived from the posterior
predictive distribution.

A.4. Computational details: Experiment 3, Causally-structured concepts

For the causal experiment, the hypothesis space includes all possible acyclic graphs over three vari-
ables, giving 12 hypotheses (3 common cause, 3 common effect, and 6 chains). The prior probabilities,
PðhÞ, are uniform, 1

12. The set of possible data include all possible pairs of interventions on three
variables (including duplicates), 3� 3 ¼ 9. The likelihood is assumed to be uniform over possible indi-
vidual interventions, 1

3, and pairs are sampled independently, 1
3� 1

3. Because we are considering causal
relationships, we must additionally specify how variables affect each other. Based on the training, the
relationships were noisy-or and the strength of the causal relationships were set to :9 and the base
rate was set to :05.

Predictions for Fig. 12 were generated by running the model and plotting the likelihoods.
Predictions for Fig. 13 and 14 were generated by running the model and plotting the posterior
probabilities of the depicted hypotheses. Where there is more than one hypothesis represented by
a single bar, the posterior probabilities were averaged.
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