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Abstract 
Much of what we learn, we learn from others. What guides 
learners' choice of informants? Research suggests that 
learners resist informants who provide incorrect information 
or insufficient information for accurate inference. Here we 
propose that learners’ choices of informants are rationally 
guided by the extent to which evidence supports accurate 
inference, rather than the sheer amount of evidence provided. 
Extending recent research formalizing pedagogical reasoning, 
we propose a computational model of efficient teaching. We 
present an experiment on adults testing three different 
hypotheses about learners’ preferred level of the amount of 
data. The results suggest that learners care about the inductive 
sufficiency of evidence, rather than the amount of evidence 
provided. We conclude by discussing the implications of 
these findings for cognition more broadly. 

Keywords: Trust; Pedagogical reasoning; Bayesian model. 

People face a seemingly intractable problem in learning 
about the world. There is an endless amount of information 
to learn, but relatively limited time to acquire information. 
Fortunately, learners are surrounded by other agents who 
can help them learn. However, although some people may 
be valuable sources of information, not all are, and learners 
must decide whom to ask for information. What governs 
learners' choices of informants? 

Most prior research about learners’ sensitivity to the 
reliability of informants has been conducted with children. 
Koenig and Harris (2005) found that by four years of age, 
children track whether informants have been correct or 
incorrect in the past and use this to guide their future 
choices of informants. Moreover, children are sensitive to 
parametric variations in informants’ accuracy (Pasquini, 
Corriveau, Koenig, & Harris, 2007).  Additionally, children 
use information about group consensus to select informants 
(Corriveau, Fusaro, & Harris, 2009). These results suggest 
that by four years of age, children can use diverse cues to 
establish the reliability of informants. 

However, there is good reason to believe that reliability is 
not the only factor that influences children's epistemic trust. 
A recent study by Gweon, Pelton, and Schulz (2011) 
suggests that children not only expect teachers to provide 
accurate data, but also expect teachers to provide 
inductively sufficient data.  Children gave lower ratings to a 
teacher who showed one function of a toy that actually had 
multiple functions, than to a teacher who gave the same 
demonstration on a toy that actually had just the one 
function. 

Indeed, one advantage of social learning is that it reduces 
the amount of data required for accurate inference by 
allowing the learner to make inductive inferences from 
small amounts of data. How much evidence is enough? 

We hypothesize that people do not simply use the sheer 
quantity of data to decide how helpful a teacher is, but 
instead consider the extent to which the data provided 
supports accurate inductive inferences. If a learner's goal is 
simply to acquire as much data as possible, people should 
always prefer a teacher who offers more data. However, if 
the learner’s goal is specifically to acquire as much data as 
necessary for accurate inference, then two teachers can be 
considered equally helpful, even if one of them provides 
much less data overall. Consider the toys in Figure 1a; the 
toys have a number of knobs, which when pressed may or 
may not cause exciting effects. As a learner, you may be 
curious to know how many of the knobs cause an effect. 
You may also have past experience with toys like this, and 
this experience might generate expectations about how 
many knobs are likely to work. For instance, you may know 
that just a few knobs (e.g., two on average) cause effects 
and the rest do not (independent of the total number of 
knobs). If you were to learn about one of the toys, would 
you choose a demonstrator who exhaustively pressed all of 
the knobs, or one who pressed a few working knobs and 
stopped? (See Figure 1b.)  



Clearly, the exhaustive demonstration would provide the 
most data; indeed, such a demonstration would be 
deductively sufficient to infer the number of working knobs. 
If the only goal is to maximize the overall amount of data, 
the learner should always prefer more demonstrations to 
fewer demonstrations. 

By contrast, if the learner is sensitive to the cost of 
providing data and cares most about minimizing this cost, 
then the learner should penalize teachers who provide data 
beyond what is necessary to make a reasonable guess. 
Rather than thinking that a teacher who provides exhaustive 
evidence is being helpful (e.g., by demonstrating that the 
remaining knobs are in fact inert and thereby marginally 
reducing the uncertainty), a learner who has a strong bias 
against incurring the cost of additional demonstrations 
should resist demonstrations that are consistent with the 
learner’s beliefs. In this case, learners should prefer 
informants who provide fewer demonstrations. 

However, if as we hypothesize, learners value data that 
leads to accurate inferences, learners may be satisfied with 
seeing just a few working knobs (since the learner can infer 
that the informant omitted superfluous demonstrations of 
the inert knobs), but also may be happy to see additional 
demonstrations that provide maximal certainty about the 
toy. Such a flexible trade-off between efficiency and 
certainty would lead to a preference for inductively 
sufficient demonstrations.  

Building off of recent research formalizing data selection 
in teaching situations, we introduce a computational model 
of efficient teaching. The model captures these three 
hypotheses about learners’ choices of informants: that 
learners strongly prefer informants who offer as much data 
as possible; that learners are very sensitive to the cost of 
data and thus prefer teachers who offer as little data as 
possible, or finally, that learners care that the data supports 
accurate induction but are happy to acquire additional data 
as well. In our experiment, we ask adult participants to 
choose between informants who provide data that is always 
true but varies in quantity and informativeness. We 
conclude by contrasting our research with previous findings.  

A computational model of efficient teaching 
To formalize what constitutes sufficient data, we must 
consider which data should be chosen and the degree to 
which the data increase the learners’ certainty relative to the 
added cost of the demonstration. To do so, we adopt a 
Bayesian learning perspective, building off Shafto and 
Goodman's (2008) research formalizing teaching and 
learning in pedagogical settings.  

In Bayesian learning, the goal for the learner is to infer 
the probabilities of different hypotheses, h, given data, d. 
The degree to which the learner believes a hypothesis after 
observing the data---the learner's posterior beliefs---are 
denoted P(h|d). According to Bayes' theorem, posterior 
beliefs are determined by the product of the learner's prior 
beliefs in the hypothesis, P(h), and the probability of 
sampling the data assuming the hypothesis is true, P(d|h).  

Standard approaches to learning typically assume that 
data are sampled randomly. However, in pedagogical 
contexts in which the informant is knowledgeable and the 
informant's goal is to help the learner infer the true 
hypothesis, the data are not randomly sampled, but 
purposefully selected. Shafto and Goodman (2008) 
formalized teaching and learning in such pedagogical 
situations. The key differences between pedagogical and 
random sampling are that the teacher is assumed to be 
knowledgeable and helpful in her choice of data, and the 
learner believes that the teacher is knowledgeable and 
helpful. Teaching is formalized as choosing data that tend to 
maximize the learner's probability of inferring the correct 
hypothesis, PT(d|h) ∝ PL(h|d), where the subscripts T and L 
indicate teacher and learner, respectively. Learners update 
their beliefs using the knowledge that teachers are choosing 
data purposefully,  

 
That is, the key difference between Equation 1 and standard 
approaches to learning is that in Equation 1 the learner 
updates her beliefs based on the assumption that the teacher 
chooses data to help the learner infer the correct hypothesis.  

 
Figure 1: Figure illustrating the toys used the in the experiment, and possible demonstrations. (a) Toys could have 6 or 20 
knobs, which when pressed may (or may not) lead the toy to create a sound and the button to change color. (b) Two possible 
sets of demonstrations. In the first case, only three knobs are pressed, all of which elicit effects. In the second case, all of the 
knobs are pressed, only three of which elicit effects. 



Here we propose that teachers, in addition to choosing 
data that is helpful, may also consider the degree to which 
additional data increase the learner's certainty. Similarly, 
learners may vary in how much data they expect the teacher 
to provide. To capture this difference, we introduce prior 
probabilities of choosing data. The pedagogical model can 
be extended to reflect this fact by introducing a term, P(d), 
in the teacher's choice of data, 

 
Data are assumed to have a cost, and differences in the cost 
of data capture the three hypotheses of interest. 

The probability of data P(d) depends on two factors: the 
number of total demonstrations, n, and the cost of an 
individual demonstration, c. Intuitively, an informant may 
be biased toward presenting more data, less data, or may be 
unbiased; the learner may accordingly have different 
expectations of the informant. These three possibilities 
correspond to three qualitatively different cost parameters in 
our model. If the learner expects the teacher to demonstrate 
as much data as possible then providing fewer 
demonstrations incurs a higher cost. If the learner prefers to 
minimize the number of demonstrations, then given a choice 
between more data and less data, less data is more probable; 
the total cost of a set of demonstrations increases with the 
number of demonstrations. If the learner is willing to accept 
any evidence that it is inductively sufficient, then any 
amount of data is equiprobable; the total costs are constant, 
independent of the quantity of data. To capture these 
possibilities, we formalize the prior probability of the data 
as 

 
A negative value of c corresponds to an expectation of more 
data; a positive value of c corresponds to an expectation of 
less data; c=0 corresponds to equiprobable data.  

These hypotheses generate different predictions about 
learners' choices of informants. In the following experiment, 
we investigate how learners evaluate informants. 
Participants are asked to make a choice between two 
informants, which we model using a log-likelihood ratio. To 
test the hypotheses, we treat the cost as a free parameter and 
fit it to the behavioral data. If the best-fitting cost parameter 
is less than 0, then this would support the hypothesis that 
learners prefer as much data as possible; if the best-fitting 
parameter is greater than 0, this would support the 
hypothesis that learners prefer to minimize data; if the best-
fitting parameter is approximately 0, then this supports 
inductive sufficiency, the hypothesis that learners want 
enough data to make a confident inference but are happy to 
accept additional data. 

 
Experiment: Who is the better teacher? 

To investigate learners’ choices of informants, we 
conducted an experiment in which two informants provided 
demonstrations on different toys (as in Figure 1). The 
experiment included two conditions.  In one condition, 
either one, two or three knobs worked on the toys 

(Consistent condition); in the other condition, between 1/6 
and 1/2 of the knobs worked on the toys (Proportional 
condition). These two conditions allowed us to generate 
cases in which the model makes different predictions about 
identical sets of evidence.  (See Model predictions below.)  

Each demonstration consisted of informants pressing 
knobs that either elicited effects or were inert. Trials varied 
in the number of demonstrations, as well as their 
composition. Additionally, toys varied in the number of 
total knobs (either 6 or 20).  Participants used a sliding scale 
to indicate which informant was relatively more helpful. 
  This design allows us to assess the correlation between the 
model predictions and people's choices. In addition, we can 
investigate specific cases where the three accounts generate 
contrasting predictions. 
 
Method 
 
Participants. Forty-four University of Louisville 
undergraduates (22 per condition) participated in exchange 
for partial or extra credit. 
 
Materials. Participants saw a series of novel toys, described 
as wugs or daxes on a computer screen. The toys had either 
6 or 20 knobs extending from a central sphere (see Figure 
1). Clicking on a knob caused a change in its color and size.  
Only some knobs elicited the effect when clicked; the rest 
were inert. 
 
Design. Participants were randomly assigned to one of two 
conditions: Consistent or Proportional. In both conditions, 
participants first interacted with three six-knob-toys and 
then with three twenty-knob toys to learn how many knobs 
worked on average. In the Consistent condition, the six-
knob toys had one, two or three working knobs, as did the 
twenty-knob toys. In the Proportional condition, the six-
knob toys again had one, two, and three working knobs but 
the twenty-knob toys had 3, 7, and 10 working knobs. 
 
Procedure. Participants were seated at Mac Pro Desktop 
computers. The experiment proceeded in two phases: 
training and testing. In the training phase, participants 
learned how many knobs tended to work by interacting with 
the toys, as described in the Design section. At the end of 
the training phase, participants indicated how many knobs 
worked on average for the six-knob and twenty-knob toys. 
These questions were checks to ensure that the training 
phase was successful in inducing appropriate prior beliefs 
about the toys. Participants were then given feedback about 
the actual average number of working knobs.  

During the testing phase, participants were presented with 
a series of pairs of unique informants each performing 
demonstrations on a unique toy. The screen was split in 
half; in each half of the screen there was an informant with a 
toy. In the Consistent condition, the pairs were generated by  
comparing all possible pairs of the following 
demonstrations. For the six-knob-toys, there were four kinds 



of demonstrations: 3+ 3- (show 3 working knobs and 3 inert 
knobs), 3+ (show 3 working knobs), 3- (show 3 inert 
knobs), 2+ 2-  (show two working knobs and two inert 
knobs. For twenty-knob toys, there were five kinds of 
demonstrations: 3+3-, 3+, 3-, 2+2-, 10-, resulting in 36 
questions total. In the Proportional condition, the pairs were 
generated from the following demonstrations 3+3-, 3+, 3-, 
2+2- for the six-knob-toys and 3+3-, 3+, 3-, 2+2-, 10+, 10-, 
7+7- and 10+10- for the twenty-knob toys, resulting in 66 
total questions. To ensure that participants remembered the 
prior knowledge established during training, they were 
reminded of the average number of working knobs every ten 
questions. 

The start of each demonstration was indicated by the 
appearance of a hand symbol pointing to a knob, which 
proceeded around the toy clockwise. The order of positive 
and negative examples and the locations of working knobs 
on the toy were determined randomly. After observing the 
demonstrations by the informant on the left, participants 
watched the informant on the right. After both sets of 
demonstrations, participants indicated which informant they 
judged as ‘more helpful’ using a slider that appeared in the 
middle, below the two toys. The order of pairs was 
randomized, as were the sides on which each informant 
appeared. After completing all of the questions for their 
condition, participants were debriefed and thanked. 
 
Modeling. The prior knowledge, P(h), was set based on the 
demonstrations that participants observed. For simplicity, 
trials were assumed to be independent. For each condition, 
the number of working knobs (out of total number of knobs 
on the toy) were entered to a Beta-Binomial model with 
uniform parameters and the resulting distribution was the 
prior for the experimental judgments. This was performed 
separately for the six- and twenty-knob toys for each 
condition. 

To find the parameter that best fits people's judgments, we 
performed a grid search over the values from -2 to 2 in 
increments of .02. 
 
Results & Discussion 

As an initial test of the model, we assessed the correlation 
between people's judgments and the model predictions for 
the 36 questions in the Consistent condition and the 66 
questions in the Proportional condition. To do so, we fit the 
cost parameter separately to each of the two sets of data. 
The best-fitting value for the consistent condition was .02 

and for the proportional condition was 0. These resulted in 
robust correlations between the model predictions and 
human judgments; they were r=.82 and r=.84 for the 
Consistent and Proportional conditions, respectively. 

We can compare our model to a number of alternative 
proposals in which people's judgments might be explained 
by attention to more superficial aspects of the stimuli. 
Specifically, we investigated whether people's judgments 
were consistent with choosing based on the number of 
knobs on the toy, the number of positive examples 
demonstrated, the number of negative examples 
demonstrated, the number of knobs pressed, the percent of 
positive examples (out of the total knobs), and the percent of 
negative examples (out of the total number of knobs).   

Our model provided significantly better fits to people's 
judgments than (a) number of knobs (Consistent: r=-.47, 
z=6.77, p<.0001; Proportional: r=-.47, z=9.72, p<.0001), (b) 
the number of knobs pressed (Consistent: r=.27, z=3.57, 
p<.001; Proportional: r=.58, z=3.14, p<.01), and (c) the 
number of negative examples demonstrated (Consistent: r=-
.14, z=5.27, p<.0001; Proportional: r=.01, z=6.80, p<.0001), 
(d) the percent of negative examples (Consistent: r=.13, 
z=4.17, p<.0001; Proportional: r=.14, z=6.06, p<.0001). 

However, the correlation between people’s judgments and 
(e) the number of positive examples demonstrated were not 
significantly different from our model (Consistent: r=.66, 
z=1.48, p=.14; Proportional: r=.75, z=1.39, p=.16) and (f) 
the percent of positive examples (Consistent: r=.77, z=-.55, 
p=.58; Proportional: r=.88, z=-.87, p=.38). 

To further investigate the degree to which our model and 
the remaining alternatives (number of positive examples and 
percent of positive examples) fit the data, we turn to 
analyses of individuals’ judgments. For our model, we fit 
the parameter to each individual's judgments as described 
above. We correlated the predictions of our model, the 
number of positive examples, and the percent of positive 
examples with individual participants’ judgments. Our 
model (Consistent: M=.52; Proportional: M=.57) predicted 
people's judgments better than the number of positive 
examples (Consistent: M=.29, t(42)=2.7, p<.01; 
Proportional: M=.38, t(42)=2.84, p<.01, by one-tailed t-test) 
and the percent of positive examples (Consistent: M=.33, 
t(42)=2.27, p<.05; Proportional: M=.46, t(42)=1.67, p=.05, 
by one-tailed t-test). These results suggest that our model 
provides a better explanation of people's behavior than these 
alternatives. 

Figure 2: Correlations between human judgments and model predictions in the (a) Consistent and (b) Proportional conditions.
Overall, there is a strong correlation between the model predictions and people’s judgments.

(show 3 inert knobs), 2+ 2- (show two working knobs and two
inert knobs. For 20-knob toys, there were 6 kinds of demon-
strations: 3+3-, 3+, 3-, 2+2-, 10-, 7+7-, and 10+10-, resulting
in 36 questions total. In the Proportional condition, the pairs
were generated from the following demonstrations 3+3-, 3+,
3-, 2+2- for the 6-knob-toys and 3+3-, 3+, 3-, 2+2-, 10-, 7+7-
and 10+10- for the 20-knob toys, resulting in 66 total ques-
tions. Note that the Consistent condition did not include the
demonstrations that were inconsistent with the expectations
set in training. To ensure that participants use the prior be-
lief set up during training, they were reminded of the average
number of working knobs every ten questions.

For each pair, participants were asked to decide which per-
son is more helpful for learning about the wug/dax. Each
demonstration was indicated by the appearance of a hand
symbol pointing to a knob, which proceeded around the toy
clockwise. The order of positive and negative examples and
the locations of working knobs on the toy were determined
randomly. After observing the demonstrations by the infor-
mant on the left, participants watched the other informant on
the right. After both sets of demonstrations, participants in-
dicated which informant they judged as more helpful using a
slider that appeared in the middle, below the two toys. The or-
der of pairs was randomized, as were the sides on which each
informant appeared. After completing all of the questions for
their condition, participants were debriefed and thanked.

Modeling. The prior knowledge, P(h), was set based on the
demonstrations that participants observed. For simplicity, tri-
als were assumed to be independent. For each condition, the
number of working knobs (out of total number of knobs on
the toy) were entered to a Beta-Binomial model with uniform
parameters and the resulting distribution was the prior for the
experimental judgments. This was performed separately for
the 6- and 20-knob toys for each condition.

To find the parameter that best fit people’s judgments, we
performed a grid search over the values from -2 to 2 in incre-
ments of .02.

Results & Discussion
As an initial test of the model, we assessed the correlation be-
tween people’s judgments and the model predictions for the
36 questions in the Consistent condition and the 66 questions
in the Proportional condition. To do so, we fit the cost param-
eter separately to each of the two sets of data. The best-fitting
value for the consistent condition was .02 and for the propor-
tional condition was 0. These resulted in robust correlations
between the model predictions and human judgments; they
were r = .82 and r = .84 for the Consistent and Proportional
conditions, respectively.

To bolster the case for the model, we consider a number
of alternative proposals in which people’s judgments are ex-
plained by attention to more superficial aspects of the stim-
uli. Specifically, we investigated whether people’s judge-
ments were consistent with choosing based on the number
of knobs on the toy, the number of positive examples demon-
strated, the number of negative examples demonstrated, the
number of knobs pressed, the percent of positive examples
(out of the total knobs), and the percent of negative exam-
ples (out of the total number of knobs). Our model provided
significantly better fits to people’s judgments than number of
knobs (Consistent: r = −.47, z = 6.77, p < .0001; Propor-
tional: r = −.47, z = 9.72, p < .0001), the number of nega-
tive examples demonstrated (Consistent: r =−.14, z = 5.27,
p < .0001; Proportional: r = .01, z = 6.80, p < .0001), the
number of knobs pressed (Consistent: r = .27, z = 3.57,
p < .001; Proportional: r = .58, z = 3.14, p < .01), and the
percent of negative examples (Consistent: r = .13, z = 4.17,
p < .0001; Proportional: r = .14, z = 6.06, p < .0001)
were all were not as strongly correlated with people’s judg-
ments. However, the number of positive examples demon-
strated (Consistent: r = .66, z = 1.48, p = .14; Proportional:

Figure 2: Correlations between human judgments in the (a) Consistent and (b) Proportional conditions. Overall, there is a 
strong correlation between the model predictions and people’s judgments. 



Next, we turn to the amount of data learners expect. 
Recall that expecting the informant to provide as much data 
as possible is indicated by parameter values much greater 
than 0, expecting the informant to provide as little data as 
possible is indicated by parameter values much less than 0, 
and expecting inductively sufficient data is indicated by 
parameter values near 0. For the group data, the best fitting 
parameters were 0 for the Consistent condition, and .02 for 
the Proportional condition. These parameters are most 
consistent with the hypothesis that learners expect data that 
suffices for accurate inference but exact no penalty for 
additional data. 

The three different accounts make opposite qualitative 
predictions for subsets of the questions. To explore these 
differences we contrast the three hypotheses using 
parameter values of 2, -2, and 0 respectively. 

The hypothesis that learners expect as much evidence as 
possible and the hypothesis that learners expect inductively 
sufficient evidence but are happy with more evidence make 
opposite predictions for five questions in both the 
Consistent and Proportional conditions. For example, in the 
Consistent condition, the preference for maximal evidence 
predicts that 2+2- should be preferred to 3+ (because there’s 
a total of four demonstrations versus only three); whereas 
inductive sufficiency predicts the opposite preference. 

With so few questions, it is not surprising that, although 
people's judgments tended toward a preference for inductive 
sufficiency, there were not statistically significant 
differences in participants’ responses to these questions 
(Consistent: M=11.36, t(4)=1.81, p=.14; Proportional:  
M=4.66, t(4)=-.38, p=.72). 

To separate the predictions of a preference for maximal 
data and inductive sufficiency, we identified the ten 
questions on which the predictions differed the most in each 
condition. We standardized the predictions of each model 
and chose the questions that had the largest absolute 
difference in predictions.  

In the Consistent condition, the question with the largest 
difference compared a six-knob-toy with 3- and a twenty-
knob-toy with 3+. Inductive sufficiency predicts a strong 
preference for the 3+ demonstration on the twenty-knob toy 
(because the learner is certain that three knobs work on the 
twenty-knob toy but uncertain whether 1, 2, or 3 knobs 
work the six-knob-toy) whereas a preference for maximal 
data predicts a strong preference for the 3- demonstration on 
the six-knob-toy (because the learner has evidence for half 
of the knobs on the six-knob-toy but only 3 of 20 for the 
twenty-knob-toy). That is, the learner might prefer the 
greater confidence afforded by the demonstration of the 
working knobs or might prefer a greater relative number of 
demonstrations (3- out of 6). Over the ten questions, there 
was a stronger correlation between inductive sufficiency and 
people's judgments, r=.85, than between the preference for 
maximal evidence and people's judgments, r=-.20, z=2.73, 
p<.01. 

In the Proportional condition, the question with the largest 
difference compared 10+ versus 10- on twenty-knob-toys. 

Inductive sufficiency predicts a strong preference for 10+, 
whereas the preference for maximizing demonstrations 
predicts a slight preference for 10+. Over the 10 questions, 
there was a stronger correlation between inductive 
sufficiency and people's judgments, r=.90, than between 
maximizing demonstrations and people's judgments, r=.29, 
z=2.2, p<.05. 

The hypothesis that learners expect as little evidence as 
possible and the hypothesis that learners expect inductively 
sufficient evidence make opposite predictions for 13 
questions in the Consistent condition and 18 questions in the 
Proportional condition. For example, in the Consistent 
condition, a preference for minimal demonstrations predicts 
that 2+2- is preferred to 3+3- whereas inductive sufficiency 
predicts the opposite.  

People's responses on these questions were coded as 
positive if consistent with the predictions of inductive 
sufficiency and negative if they were consistent with a 
preference for less data. People's judgments in the 
Consistent condition were in agreement with the predictions 
of inductive sufficiency both on average, M=32.6, 
t(12)=8.91, p<.0001, and in every individual case. Similarly, 
people's judgments in the Proportional condition were 
overwhelmingly in accord with the predictions of inductive 
sufficiency, M=34.63, t(17)=10.27, p<.0001.  

General Discussion 
We have proposed that learners' choice of informants is 

guided primarily by the degree to which evidence supports 
accurate inference. We presented a computational model 
that differentiates among the hypotheses that learners 
choose informants who provide as much data as possible, 
informants who minimize the amount of data provided, and 
informants who provide at least enough data to support 
accurate induction.  The results show that people's behavior 
is best explained by inductive sufficiency. 

Note that providing maximal data can, in simple cases, 
lead to deductive certainty.  For finite, well-defined sets of 
possibilities (like those tested here), exhaustive 
demonstrations eliminate uncertainty. However, our results 
show that even on relatively small, well-defined learning 
problems, learners do not simply prefer informants who 
provide maximal amounts of data. In fact, people are just as 
likely to endorse much smaller sets of data, as long as the 
data provided suffices for accurate inductive inference. This 
suggests that learners are sensitive to the trade-off between 
the benefit of increased certainty from acquiring more data 
and the cost of acquiring more data; this sensitivity enables 
learners to decide how much data is ‘enough’. 

We did not find evidence for a simple preference for less 
data. A particularly interesting example is that people did 
not prefer the demonstration of three working knobs to the 
demonstration of exhaustive evidence, although the former 
supported an accurate inference with half as much data. This 
may be due to features of our experimental design.  There 
was relatively little reason to avoid additional 
demonstrations (among other things, each additional knob 



only took a second to press). Furthermore, our dependent 
measure asked learners to rate the helpfulness of the 
informant and learners have little reason to consider an 
exhaustive informant unhelpful.  Finally, the additional 
demonstrations genuinely reduced some uncertainty: each 
toy was unique and the training only provided a few 
examples to establish the base rate of the effective knobs.  
Had the learners been more certain about the number of 
working knobs, they might have shown a stronger bias 
against exhaustive evidence.  

We have presented evidence that learners’ choice of 
informants is not solely guided by the sheer amount of 
information; learners do not merely maximize the amount of 
data they can observe, nor do they minimize it. In seeking to 
make confident inductive inferences, learners can decide 
when enough is enough. 
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