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Different intuitive theories constrain and guide inferences in different contexts. Formaliz-
ing simple intuitive theories as probabilistic processes operating over structured represen-
tations, we present a new computational model of category-based induction about causally
transmitted properties. A first experiment demonstrates undergraduates’ context-sensitive
use of taxonomic and food web knowledge to guide reasoning about causal transmission
and shows good qualitative agreement between model predictions and human inferences.
A second experiment demonstrates strong quantitative and qualitative fits to inferences
about a more complex artificial food web. A third experiment investigates human reason-
ing about complex novel food webs where species have known taxonomic relations.
Results demonstrate a double-dissociation between the predictions of our causal model
and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain
structures. In Proceedings of the 25th annual conference of the cognitive science society]:
the causal model predicts human inferences about diseases but not genes, while the taxo-
nomic model predicts human inferences about genes but not diseases. We contrast our
framework with previous models of category-based induction and previous formal instan-
tiations of intuitive theories, and outline challenges in developing a complete model of
context-sensitive reasoning.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Any familiar thing can be thought about in a multitude
of ways. A cat is a creature that climbs trees, eats mice, has
whiskers, belongs to the category of felines, and was rev-
ered by the ancient Egyptians. Knowledge of all of these
kinds plays an important role in inductive inference. If
we learn that cats suffer from a recently discovered dis-
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ease, we might think that mice also have the disease – per-
haps the cats picked-up the disease from something they
ate. Yet if we learn that cats carry a recently discovered
gene, lions and leopards seem more likely to carry the gene
than mice. Flexible inferences like these are a hallmark of
human reasoning, which is notable for the selective appli-
cation of different kinds of knowledge to different kinds of
problems.

Psychologists have confirmed experimentally that
inductive inferences vary depending on the property in-
volved. When adults are told about genes or other internal
anatomical properties, they tend to generalize to taxonom-
ically related categories (Osherson, Smith, Wilkie, L’opez, &
Shafir, 1990). When told about novel diseases, however,
adults may generalize to categories related by a causal
mechanism of disease transmission, such as a food web
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(Shafto & Coley, 2003). Across development, children dem-
onstrate increasingly distinct patterns of inference for
properties such as drinking versus riding (Mandler &
McDonough, 1996, 1998a, 1998b), anatomic versus tran-
sient properties (Gelman & Markman, 1986), and anatomy
versus beliefs (Springer, 1996; Solomon, Johnson, Zaitchik,
& Carey, 1996). Psychologists have also suggested, at least
in principle, how complex inferences like these might
work. Flexible inductive inferences are supported by intui-
tive theories (Murphy & Medin, 1985; Carey, 1985; Keil,
1989), or ‘‘causal relations that collectively generate or ex-
plain the phenomena in a domain” (Murphy, 1993). In any
given domain, more than one theory may apply, and differ-
ent patterns of inference will be observed depending on
which theory is triggered.

Although a theory-based approach is attractive in prin-
ciple, formalizing the approach is a difficult challenge. Re-
cent work by Kemp and Tenenbaum (2003) has proposed a
model for taxonomic theories. Here we describe and test a
Bayesian theory-based model of induction about causally
transmitted properties. This new model is a rational anal-
ysis of reasoning about causal transmission in the sense
of Anderson (1990). The model consists of two parts: a
generative theory that defines prior beliefs, and Bayesian
inferential machinery that generalizes novel concepts by
combining observed examples with prior beliefs.

We begin by discussing the problem of context-sensi-
tive induction, and explain why theories and causal knowl-
edge are important to understanding context-sensitive
induction. We then present our model of causal property
induction and the Bayesian framework for theory-based
inference. A first experiment investigates undergraduates’
reasoning about species with familiar taxonomic and food
web relations, demonstrating qualitative fits between
model predictions and human inferences. A second exper-
iment shows that the model predicts human inferences
about the distribution of diseases over a more complex
artificial food web. In a third experiment, we contrast the
fits of causal and taxonomic models to human generaliza-
tions of diseases and genes over known species, showing
that the causal model predicts inferences about diseases
but not genes, and the taxonomic model predicts infer-
ences about genes but not diseases. Finally, we discuss
our contributions to understanding the relationship be-
tween prior knowledge and reasoning, and outline chal-
lenges in developing a full model of context-sensitive
induction.

2. Context-sensitive induction

In category-based induction tasks (Rips, 1975), partici-
pants are given one or more examples of categories that
have a novel property. For example, participants may be
told, ‘‘Lions have gene XR-35”, where the property is gene
XR-35, and lions are one example of things that have the
property. Participants are then asked to judge the probabil-
ity that other categories have the property; for example,
‘‘How likely is it that tigers have gene XR-35, like lions?”
Properties are chosen such that participants have no
specific knowledge about which categories have the prop-
erties, and predictions must be generated based on prior
knowledge about the kind of property and the categories
in question. Many elements of the context may influence
reasoning in these tasks. Several important sources of con-
text are the property being generalized, the sampling of
example categories, instructions, and general demand
characteristics. In this paper, we are concerned with the ef-
fects of different kinds of properties on inductive
generalization.

Research has confirmed that the properties used
strongly influence the inductive inferences of both children
and adults. For example, Gelman and Markman (1986)
found that 4-year-old children generalize internal anatom-
ical and behavioral properties (‘‘has cold blood”) but not
idiosyncratic properties (‘‘gets cold at night”) between
members of the same category. Working with adults, Heit
and Rubinstein (1994) showed that inferences differ when
reasoning about behavioral versus anatomical properties.
For example, participants were more willing to generalize
between taxonomically matched species such as bears
and whales when reasoning about properties such as
‘‘has a liver with two chambers that act as one”. However,
when reasoning about a behavioral property such as ‘‘usu-
ally travels in a back-and-forth, or zig-zag, trajectory”, par-
ticipants were more willing to generalize between
behaviorally matched species such as tuna and whales.
More recent research has shown that fishermen generalize
diseases, but not properties, over food web relations, with
inferences being stronger from prey to predators than from
predators to prey (Shafto & Coley, 2003). These experimen-
tal examples underscore the importance of properties in
inductive reasoning.

Previous models of property induction have had diffi-
culty explaining sensitivity to context. Consider first the
similarity-coverage model (Osherson et al., 1990), the best
known model of category-based inductive reasoning. It
predicts inferences about novel properties based on simi-
larities between pairs of categories and a hierarchy of tax-
onomic relations among categories. The model makes
accurate predictions about human generalizations in de-
fault contexts, when people are reasoning about generic
biological properties that seem to refer to anatomy or
physiology. However, accounting for inferences about ana-
tomical and behavioral properties such as those in Heit and
Rubinstein (1994) would require extending the model to
allow context-sensitive notions of similarity. Even if this
amendment is allowed, similarity-based approaches can-
not naturally account for the causal asymmetries demon-
strated in Shafto and Coley (2003) because ratings of
similarity between predators and prey do not show strong
asymmetries (see also Medin, Coley, Storms, & Hayes,
2003). To be fair, the similarity-coverage model was not
designed with multiple contexts in mind; nevertheless,
any comprehensive model of category-based induction
will have to deal with the general phenomenon of con-
text-sensitive reasoning, and reasoning about causally
transmitted properties in particular.

Sloman (1993) proposed a more flexible feature-based
approach to modeling property induction. Instead of
appealing to stable notions of similarity or taxonomy,
Sloman posits that each category is represented by a large,
potentially context-sensitive, set of features. The strength
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of an inference from one or more example categories to
some target category is based on a measure of overlap be-
tween the features of the target category and those of the
example categories. Depending on how the features are se-
lected or generated, Sloman’s model could accommodate
various effects of context-sensitive induction. Yet the mod-
el does not really explain these effects, because it does not
attempt to account for how the features used to represent
categories are derived, or how they vary with context.

One possible source for flexible feature generation or
weighting could be abstract prior knowledge – knowledge
about the kinds of features likely to be relevant in different
contexts of reasoning. Sloman (1993, 1994) suggests that
such knowledge could be the basis for feature weights in
his approach, but he does not pursue a formal account of
knowledge-based feature weighting. In a sense, this is
our goal here. We adopt a Bayesian framework rather than
a feature-based framework, but the approaches are analo-
gous: Bayesian inference operates over a space of implicit
hypotheses for how properties apply to categories rather
than a space of implicit features for categories; the prior
probabilities of hypotheses are analogous to feature
weights. We will show how abstract domain theories can
be used to generate appropriate priors for either a default
context of taxonomic reasoning or an important alterna-
tive inductive context – reasoning about causally transmit-
ted properties. We now turn to describing the role of
intuitive theories – and theories of causal transmission in
particular – in guiding inductive reasoning. We will return
to the relationship between our theory-based Bayesian
modeling approach and the similarity-coverage and fea-
ture-based models in the general discussion.

3. Intuitive theories of causal transmission

Two important roles of intuitive theories are to specify
causal relations between features and causal relations be-
tween entities as well as implications of those relations.
Several studies have shown that causal relations among
features influence both categorization (e.g. Ahn, 1998;
Rehder, 2003; Rehder & Hastie, 2001) and inductive rea-
soning (e.g. Rehder, 2006; Rehder & Burnett, 2005). Here
we consider inductive reasoning about causal relations be-
tween entities; specifically, causal transmission of proper-
ties over these relations.

Reasoning about causal transmission between entities
is fundamental across a broad range of domains, including
the domains of folkbiology, folkpsychology, and folkphys-
ics (Wellman & Gelman, 1992). In the domain of biology,
reasoning about diseases depends on knowledge about po-
tential mechanisms of causal transmission, such as feeding
relations, physical/sexual contact, or spatial proximity. A
growing body of evidence suggests that people from many
cultures and age groups use knowledge about causal and
ecological relations to reason about novel diseases. Indige-
nous Mayans (López, Atran, Coley, Medin, & Smith, 1997)
and American tree experts (Proffitt, Coley, & Medin,
2000) use knowledge about ecological relations and poten-
tial mechanisms of transmission among local species to
reason about diseases. Commercial fishermen use knowl-
edge about food web relations to reason about novel dis-
eases (Shafto & Coley, 2003). Similarly, rural and urban
children use knowledge about causal and ecological rela-
tions to guide inferences about diseases (Coley, Vitkin, Sea-
ton, & Yopchick, 2005). Developmental studies in the
domain of folk psychology have shown that young children
know that beliefs are transmitted socially (e.g. Solomon
et al., 1996; Springer, 1996). Evidence from the domain
of folk physics shows that children differentiate cases
when forces could be transmitted between entities and
cases when they cannot (e.g. Shultz, 1982). Reasoning
about causal transmission is thus a highly general problem
faced in a wide variety of domains.

Reasoning over causal relations requires concrete
knowledge about the causal relations between entities,
and more abstract knowledge about how properties are
transmitted between entities (cf. Tenenbaum, Griffiths, &
Kemp, 2006). We know that rabbits eat carrots, and that
this is a potential means by which they may contract an
illness. However, knowledge about the relationship be-
tween rabbits and carrots is tied to these examples: it
does not tell us what other things are likely to eat carrots.
Knowledge that eating is a route of disease transmission
is abstract: it tells us that for any new pair of entities,
the eater may contract an illness from feeding on infected
or contaminated eatee. This distinction between concrete
and abstract knowledge may explain why experts but not
undergraduates showed context-sensitive reasoning
about diseases in Shafto and Coley (2003); undergradu-
ates may not have had the concrete knowledge required
to make inferences based on causal transmission. Even
if they knew that diseases may be transmitted from prey
to predators, they would not have been able to use it. In
this paper, we approach modeling knowledge about cau-
sal transmission using this multi-level approach, and we
will investigate the validity of this assumption in our
experiments.

4. Theory-based property induction

Bayesian models of category-based induction have been
proposed before, but most suffer from an important limita-
tion: the prior distribution plays a critical role in predic-
tion, but previous models have not provided a formal
account of the origins of this prior (Heit, 1998; Sanjana &
Tenenbaum, 2003; Tenenbaum & Griffiths, 2001, but see
Kemp & Tenenbaum, 2003). Theories offer a potential solu-
tion, provided they can be formally instantiated. Here we
present a framework that combines Bayesian inference
with theories that are formalized as probabilistic graphical
models (Pearl, 2000; Spirtes, Glymour, & Schienes, 1993).
The Bayesian inference engine implements rational statis-
tical inference, and remains the same regardless of the
inductive context. We model theories using probabilistic
processes operating over graphical representations of the
relationships between categories. Different probabilistic
graphical models generate different prior distributions
over hypotheses, and these priors lead to different patterns
of inductive inference when combined with the Bayesian
inference engine.
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4.1. The Bayesian inference engine

In property induction, we observe one or more example
categories D that have a novel property, and wish to com-
pute the probability that another category (or set of cate-
gories) y also has the property. To compute this
probability, we consider a hypothesis space H of all possi-
ble extensions of the property (see Fig. 1). Each hypothesis
h specifies a particular subset of entities that have the
property. The probability that y has the property, given
D, can be computed by averaging the predictions of these
hypotheses, weighted by their posterior probabilities

pðyjDÞ ¼
X

h2H

pðyjhÞpðhjDÞ:

Note that p(yjh) equals one if y 2 h and zero otherwise. We
can expand p(hjD) using Bayes’ rule,

pðyjDÞ ¼
X

h

pðyjhÞpðhjDÞ ¼
X

h

pðyjhÞpðDjhÞpðhÞ
pðDÞ : ð1Þ

The likelihood p(Djh) is the probability of observing the
data given that a particular hypothesis is true. We assume
p(Djh) is 1 if the data are consistent with the hypothesis
and 0 otherwise; however, alternative sampling
assumptions may be implemented within this framework
(Tenenbaum, 1999; Tenenbaum & Xu, 2000). Because the
numerator in Eq. (1) is zero for any h that is not consistent
with y or not consistent with D, we can rewrite it as

pðyjDÞ ¼
X

h:y2h;D�h

pðhÞ
pðDÞ :

The denominator can also be expanded by summing over
all hypotheses

pðDÞ ¼
X

h

pðDjhÞpðhÞ ¼
X

h:D�h

pðhÞ:

Thus,

pðyjDÞ ¼
P

h:y2h;D�hpðhÞ
P

h:D�hpðhÞ : ð2Þ

The generalization probability p(yjD) is therefore equal
to the proportion of hypotheses consistent with D that also
include y, where each hypothesis is weighted by its prior
probability p(h). If the conclusion y is included in most of
the hypotheses with high prior probability that also con-
tain the examples D, then the probability of generalization
will be high.
h
1

Entity 2 

Entity 1 

Entity 3

h
2

h
3

h
4

h
5

h
6 h

7
h

8

Fig. 1. All possible extensions of a novel property in a domain with three
entities. Each candidate extension is a hypothesis, and black circles
indicate that a given entity has the novel property.
4.2. Theory-based priors

The prior probabilities p(h) in Eq. (2) represent a priori
beliefs about the probabilities of different hypotheses.
We suggest that reasoning about novel properties is guided
by intuitive theories, which specify p(h). We instantiate
these intuitive theories using a combination of structured
representations and probabilistic processes operating over
the representations. In the next section, we formalize a
simple theory of causal transmission, and explain how it
results in a prior distribution over hypotheses. We will also
introduce a theory of taxonomic inheritance (Kemp & Ten-
enbaum, 2003) and explain how it results in a prior distri-
bution over hypotheses. Throughout, we will contrast
predictions of the two models to highlight the importance
of different kinds of knowledge in supporting inferences,
and the ability of the Bayesian framework to support qual-
itatively different knowledge structures.

4.2.1. A generative model of causally transmitted properties
Consider the case of disease transmission by feeding

over food web relations (Shafto & Coley, 2003). We gener-
ate a prior distribution using a theory with two compo-
nents at different levels of abstraction (Tenenbaum et al.,
2006). At the concrete level, the theory states the preda-
tor–prey relations that hold over the domain. The set of
relations can be represented as a food web (for examples
see Fig. 2a and c). Note that different food webs may apply
to different sets of animals. At the more abstract level are
general principles that describe how diseases are spread
over any food web. The theory assumes that each species
has a probability of contracting the disease from a cause
external to the food web, and once infected an animal
can pass the disease to predators. These possibilities de-
pend on the functional form of the causal relationship
and two parameters, a background rate and a transmission
rate. The noisy-or causal relationship captures the idea
that a single exposure to a disease is probabilistically suf-
ficient to transmit the disease. The background rate is the
probability that an animal gets the property from a cause
Kelp H HD

Sa
n

SquirrelBobcatWoodchuck

Wolf Wolverine

Lion

Fox

B
ob

ca
t

L
io

n

Fo
x

W
ol

f

W
ol

ve
ri

ne

W
oo

dc
hu

ck

Sq
ui

rr
el

c d

Fig. 2. Food web and taxonomic relations for two scenarios. (a) Food web
for the island scenario. (b) Taxonomy for the island scenario. (c) Food web
for the mammals scenario. (d) Taxonomy for the mammals scenario.
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external to the web. The transmission rate is the probabil-
ity that the property is transmitted from a species along an
arrow to a causally related species. Assuming that the
background rate affects each species independently and
the transmission rate affects each arrow independently,
we obtain a prior distribution over all extensions of the
property. For simplicity we also assume for that the back-
ground rate and the transition rate are uniform across
nodes and links; however, generalizations of this model
could allow background rates and transmission rates to
vary.

This basic model of causal transmission is similar to
models used by scientists to understand transmission of
diseases among people. In May and Lloyd’s (2001) model
of epidemics, nodes represent individuals, arrows between
individuals indicate the kind of contact relevant to the dis-
ease (e.g. sexual contact in the case of HIV), and exogenous
causes represent contacts with people not included in the
network as well as other routes of causal transmission
(e.g. sharing a needle with an infected person). The models
used by scientists often include more detailed information
than is included in our model, such as attributes of the
nodes (e.g. gender), knowledge about the virulence of the
disease, and frequencies of contacts between entities (e.g.
Getoor, Rhee, Koller, & Small, 2004).

The prior probabilities, p(h), represent the degree of be-
lief in different possible extensions of the property, where
each extension specifies for each animal whether it has the
property or not. These priors can be computed by repeat-
edly simulating the arrival and transmission of disease in
this model. A single simulation chooses a set of animals
that acquire the disease from exogenous causes, and a set
of causal links that are active (Fig. 3a). These choices imply
that a certain set of animals will catch the disease, and that
hypothesis is the output of the simulation (Fig. 3b). If we
imagine repeating the simulation infinitely many times,
the prior probability of any hypothesis is equal to the pro-
portion of times it is chosen as output. In practice, approx-
imate solutions can be obtained by repeating this
simulation many times, and the quality of the approxima-
tion depends on the size of the network and the number of
samples taken. For small problems the prior probabilities
can be enumerated and calculated exactly, and we used
this method for all of our calculations in this paper. Reflect-
ing on the simulations should establish that the prior cap-
tures two basic intuitions. First, species that are linked in
a b

Fig. 3. One sample from the probabilistic model used to define prior
beliefs. Black ovals indicate entities that have the disease. Black arrows
indicate active routes of transmission. (a) Initial step showing active links
and species that acquired the disease from exogenous causes. (b) Total set
of species with disease via exogenous causes and causal transmission.
the web are more likely to share the property than species
that are not directly linked. Second, property overlap is
asymmetric: properties found in prey are more likely to
be present in predators than vice versa.

Two qualitative predictions emerge from the model,
and will be tested in the experiments that follow. One phe-
nomenon, causal asymmetry (Shafto & Coley, 2003; Medin
et al., 2003), predicts that generalizations from prey to
predator will be stronger than generalizations from preda-
tor to prey. Intuitively, this is because causal transmission
is directed: when a prey has the property, by transmission
the predator may acquire it. However, when a predator has
a property, it may be because it acquired the property from
the prey, or from some other cause. A second phenomenon,
causal distance, predicts that the strength of generalization
will decrease with increasing distance in the web. Intui-
tively, this is because the mechanism of causal transmis-
sion is fallible, so the probability that one species will
receive a property transmitted by a second species de-
creases with the distance between them. Appendix A
shows more formally how these qualitative predictions fol-
low from our model. In addition, the model makes fine-
grained quantitative predictions which will also be tested.

4.2.2. A generative model for taxonomic properties
The taxonomic model is based on two key ideas: species

fall at the leaves of a known taxonomic tree (see Fig. 2b
and d), and the novel properties are generated by a muta-
tion process over the tree. Imagine a property that arises at
the root of the tree, and spreads out towards the leaves.
The property starts out with some value (on or off), and
at each point in the tree there is a small probability that
the property will mutate, or switch its value.

The taxonomic model has a single parameter – a muta-
tion rate – which intuitively corresponds to the number of
mutations a feature is expected to undergo while traveling
down the tree. As in the previous generative model, this
stochastic process induces a prior distribution over all pos-
sible extensions of a novel property. This prior captures a
key intuition about taxonomic properties: the closer two
species lie in the tree, the more likely they are to share a
property. We call this prediction taxonomic distance, and
we will test it as well as the qualitative predictions of the
causal model in the experiment that follows.

This taxonomic model is related to the model for caus-
ally transmitted properties. Both models are based on
structured representations (food webs or trees), and incor-
porate stochastic processes over those representations.
Both are theories which generate knowledge-specific prior
distributions over hypotheses, and explain phenomena in a
domain. Both priors are combined with evidence by the
same Bayesian inferential framework. These models thus
provide insight into how domain-specific knowledge can
be combined with domain-general inference mechanisms
to explain context-specific inferences.

Both the causal and the taxonomic model were built by
thinking about how properties are distributed in the
world: diseases are distributed in the world by direct
transmission between entities, while genes are distributed
according to a mutation process over the evolutionary tree.
Because both models are simple models of how the world
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works, both correspond to simple versions of models used
by scientists – models like the causal model are used by
epidemiologists, and models like the taxonomic model
are used by evolutionary biologists. The resemblance be-
tween our models and scientific models reflects the
assumption that people are approximately rational with
respect to simple formulations of problems in the world.

5. Experiment 1: Reasoning about real-world causal
transmission

People have a wide variety of knowledge about plants
and animals which they might use to guide their infer-
ences, making it important to establish whether there exist
contexts that elicit reasoning based on causal and taxo-
nomic knowledge. We asked participants to make judg-
ments about the distribution of two different kinds of
properties: novel physiological properties and novel dis-
eases. Previously, Shafto and Coley (2003) demonstrated
that experts’ reasoning about diseases but not genes
showed causal asymmetry. The current experiment inves-
tigated whether undergraduates’ reasoning about diseases
and physiological properties of known species would show
context-sensitive use of causal and taxonomic knowledge.

To test this question, we assembled sets of three-spe-
cies food chains, each composed of one prey, a predator
of that prey, and a predator of the predator (e.g. carrots,
rabbits, and wolves). We used simple chains to insure that
participants knew the requisite food web relations, and
were therefore able to apply their knowledge of causal
transmission, if they deemed it appropriate. Taxonomic
questions were drawn from items that did not have food
web relations.

5.1. Method

5.1.1. Participants
Fourteen people participated in this experiment in ex-

change for a small monetary reward. Participants included
both undergraduates and members of the broader M.I.T.
community.

5.1.2. Materials and design
We identified six sets of three-link predator–prey

chains that were familiar to undergraduates through
pre-testing. These chains were: grass-sheep-wolves,
plankton-salmon-grizzly bears, acorns-squirrels-hawks,
sunflower seeds-sparrows-house cats, grain-mice-owls,
and carrots-rabbits-fox. The full set of questions used in
the experiment included all pairs within each causal chain
(six per chain, 36 total), and six specifically taxonomically
related pairs (asked in both orders, 12 total), and an addi-
tional 12 questions that were neither taxonomically close
nor causally related. All of the taxonomic and unrelated
pairs were created using species from the causal chain
stimuli.

5.1.3. Procedure
The experiment was conducted on computer using

MATLAB. Participants provided judgments in both the dis-
ease and physiological property conditions. Order was
counterbalanced across participants. For each property,
participants rated the likelihood of 60 statements of the
form, ‘‘Carrots carry the bacteria XD. How likely is it that
rabbits also carry the bacteria?” In the physiological prop-
erty condition, questions asked whether a species would
‘‘have the XD enzyme for reproduction”. Color pictures of
the animals appeared with the questions. Ratings were
made on a sliding scale that varied continuously between
1, ‘‘very unlikely”, and 7 ‘‘very likely”. The letter combina-
tion identifying the property was different for each ques-
tion. Order of questions was randomized within each
condition.

5.2. Results and discussion

We analyzed people’s judgments for the presence of the
two effects predicted by the transmission model, causal
asymmetry and causal distance, and one effect predicted
by the taxonomic model, taxonomic distance. We expect
that effects predicted by the transmission model will be
observed for diseases, but not physiological properties,
and effects predicted by the taxonomic model will be
observed for physiological properties but not for diseases.
Because the predictions are across different items, we
collapsed the data across participants. To test for causal
asymmetry we compared inferences up the food chain,
from prey to predators, to inferences down the food chain,
from predators to prey (see Fig. 4, left panel). There was
a marked difference between inferences up the chain
(Meanup = 5.09) and down the chain (Meandown = 4.42) for
diseases (t(22) = 3.17, p < 0.005), but no difference for
physiological properties (Meanup = 3.16, Meandown = 3.24,
t(22) = 0.17, p > 0.5).

To test for causal distance we compared inferences one
link up the food chain (e.g. carrot-rabbit) to inferences two
links up the food chain (e.g. carrot-wolf). Participants rated
one link inferences significantly more likely than two-link
inferences for diseases (Mean1 = 5.09, Mean2 = 2.71,
t(16) = 7.79, p < 0.001) as well as for physiological proper-
ties (Mean1 = 3.16, Mean2 = 1.58, t(16) = 4.03, p < 0.005).
Because distance in the food web is correlated with dis-
tance in a taxonomy, it is possible that the causal distance
effect observed with physiological properties may be arti-
factual. We conducted a follow up analysis to test this pos-
sibility, which focused on the subset of causal distance
items that were of the same taxonomic distance (Fig. 4,
middle panel). The results showed no change in the effect
for diseases (Mean1 = 5.01, Mean2 = 2.71, t(10) = 7.72,
p < 0.001), and a markedly decreased effect for physiologi-
cal properties (Mean1 = 2.11, Mean2 = 1.58, t(10) = 2.30,
p = 0.04).

To test for taxonomic distance, we compared inferences
of distances 1 (e.g. between two mammals), 2 (e.g. be-
tween a mammal and a bird), and 3 (e.g. between a mam-
mal and a plant). For physiological properties, participants
rated taxonomic distance 1 inferences (M1 = 5.43) more
likely than distance 2 (Mean2 = 3.68, t(24) = 8.48,
p < 0.001), and distance 2 more likely than distance 3
(Mean3 = 1.79, t(42) = 12.39, p < 0.001). For diseases, there
was no difference between items of taxonomic distance 1
and 2 (Mean1 = 4.37, Mean2 = 4.11, t(24) = 0.60, p > 0.50)
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but there was a just-significant difference between items
of distance 2 and 3 (Mean3 = 4.21, t(42) = 3.30, p = 0.04).
Controlling for causal distance across taxonomic distances
by not including items with causal distance 2 resulted in
no change in the effect for the physiological property
(Mean3 = 1.88, t(30) = 8.48, p < 0.001) but eliminated the
effect for diseases (Mean3 = 3.55, t(30) = 1.14, p > 0.25; v
Fig. 4, right panel).

The results are consistent with the predictions of the
models. We unexpectedly observed a prediction of the cau-
sal model, causal distance, for physiological properties.
This effect was clearly smaller than for diseases; however,
we will return to this issue in the third experiment and dis-
cuss it more fully there. These results suggest that under-
graduates chose, from the wealth of information that
they know about animals, taxonomic and food web knowl-
edge to guide inferences in these two contexts. This result
provides evidence that models of both kinds of knowledge
are necessary to account for people’s reasoning. In the sec-
ond experiment we turn our attention to more systemati-
cally investigating predictions of the causal model using a
more complex food web scenario.

6. Experiment 2: Testing the causal model

As we have described them, intuitive theories include
two components: concrete knowledge about how a given
set of entities can be organized into a structured represen-
tation, and more abstract knowledge about how properties
are distributed over one of these representations. Both
components are needed for inductive inferences about no-
vel properties, but any given person may only have one of
them. A visitor to a foreign country may know quite well
that a predator can catch a disease by eating an infected
prey animal, even if she does not know which animals
eat each other in the local ecosystem. On the other hand,
a child may often have observed an animal of species X
eating an animal of species Y, but may not have made a
connection between feeding relationships and the trans-
mission of disease.
Although both components of intuitive theories are
important, the average city-dwellers cannot be expected
to have common knowledge of vast food webs. In this
experiment, we taught our participants the novel food
webs over blank (unnamed) animals (see Fig. 5). These no-
vel situations take advantage of the abstract nature of
knowledge about causal transmission, allowing use of a
more richly structured food web to test the detailed quan-
titative predictions of the causal model. Quantitative fits of
model predictions to human judgments provide a more
stringent test of the model than qualitative effects – not
only does the model have to predict individual qualitative
effects, but also their relative importance. In the experi-
ment, after learning the food web, participants were given
a series of inductive problems. In each case, participants
were told about a single animal that had a disease and then
were asked how likely another animal was to have the dis-
ease. We will assess qualitative effects as well as the agree-
ment between the model prediction and people’s
judgments for each question.

6.1. Method

6.1.1. Participants
Twenty people participated in this experiment in

exchange for either course credit or a small monetary re-
ward. Participants included both undergraduates from
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Northeastern University and M.I.T. and members of the
broader M.I.T. community.

6.1.2. Materials and design
Participants were tested on two different food webs

(see Fig. 5, we refer to these as the (a) island scenario
and (b) mammals scenario). The animals featured in these
scenarios were blank (unnamed), but the scenarios were
based on hypothetical scenarios with real animals. Each
participant saw both scenarios, and the order of scenarios
was counterbalanced across participants. Information
about the food webs was conveyed to participants using
two sets of seven cards. On each card was printed the name
of one animal (e.g. ‘‘Animal A”) and the immediate preda-
tors and prey of that animal. For example, the card corre-
sponding to animal A read, ‘‘Animal A is eaten by animal
D” and ‘‘Animal A eats animals C, E, and G”. When the ani-
mal did not have any predators or prey, the card read ‘‘Ani-
mal D is not eaten by any other animals” or ‘‘Animal C does
not eat any other animals”. The statements appeared side
by side on the cards. A test was also created to familiarize
the participants with the food web information. The test
was true/false and contained statements like, ‘‘Animal A
is eaten by animal B” and ‘‘Animal D eats animal F, which
eats animal B”. At no point in the experiment did partici-
pants see a graphic representation of the food web; rather,
they had to infer the structure from information on the
cards.

6.1.3. Procedure
The experiment was conducted on computer using the

Psyscope program (Cohen, MacWhittney, Flatt, & Provost,
1993). Participants provided judgments about each sce-
nario and order of presentation was counterbalanced
across participants. For each scenario, there were two
phases: training and generalization. In the training phase,
participants were given the seven cards corresponding to
the animals in the set and asked to study the cards. Partic-
ipants were then given a 20 question true/false test based
on the information on the cards. Participants were allowed
to keep the cards for reference during the test and through
the generalization phase. Participants were required to
score 85% on the test before they could advance to the gen-
eralization phase. If participants did not pass the test with-
in 10 attempts, they were eliminated from the experiment
(no participants were eliminated from this experiment). In
each generalization phase, participants were presented
with a series of 42 questions (all possible pairs) of the form,
‘‘Animal A has a disease. How likely is it that animal B has
the same disease as animal A?” Participants rated the like-
lihood for each question on a 1–7 scale, where 1 indicated
‘‘very likely” and 7 indicated ‘‘very unlikely”. Questions ap-
peared in random order.

6.2. Results and discussion

In order to compare people’s judgments with model
predictions, we need to choose values for the free parame-
ters: the background rate of a species having a disease, and
the transmission rate, the probability of passing the dis-
ease to predators. These parameters are probabilities and
therefore vary between zero and one. To fit the parameters,
we performed a grid search over values of the parameters
at intervals of 0.1 between 0 and 1. The model demon-
strated robust performance across a range of parameter
values with best performance at a base rate of 0.1 and a
transmission rate of 0.5 (see Fig. 8). These parameter set-
tings were used for all of the data presented in this paper.
Fig. 6 shows that the model gives a good fit to human judg-
ments, with correlations between the model predictions
and human generalizations (by items) of 0.74 and 0.92
for the island and mammals scenarios, respectively.1

Qualitative results were also obtained for two causal
phenomena: causal asymmetry and causal distance (see
Fig. 7). For the qualitative analyses, results were collapsed
over the two scenarios and are based on the participants’
mean ratings for items that are relevant to that comparison.
To test for causal asymmetry, the average ratings for items
involving generalizations up the chain (from prey to preda-
tor) were compared to generalizations down the chain
(from predator to prey) using a two-tailed t-test (and
Mann–Whitney’s U). Generalizations up the food chain
(Meanup = 2.00, Medianup = 1) were stronger than general-
izations down the food chain (Meandown = 4.50, t(23) =
11.94, p < 0.001; Mediandown = 5, U(13,13) = 2,p < 0.001),
as predicted by the model. To test for the causal distance ef-
fect, generalizations up the chain were collapsed into four
categories based on the distance from the premise to the
conclusion. Causal distance predicts that generalization
strength should decrease with increasing distance. Because
there was only one argument with a distance of 4, statistical
significance could not be evaluated for this case. One-link
generalizations (Mean1 = 2.00, Median1 = 1) were stronger
than two-link generalizations (Mean2 = 3.65, t(21) = 15.75,
p < 0.001; Median2 = 3, U(13,10) = 130, p < 0.001) and two-
link generalizations were stronger than three-link general-
izations (M = 4.65, t(10) = 5.46, p < 0.01; Median3 = 5, not
enough samples for U test).

These results suggest that the model captures the major
features of human reasoning about causal transmission. In
particular, the predicted qualitative effects are observed
and the correlations reflect a high degree of agreement be-
tween model predictions and human generalizations using
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a minimal number of free parameters (2) relative to the
data (42 generalizations). Though the qualitative effects
are predicted across almost all parameter settings, quanti-
tative fits reflect much more detailed predictions about the
relative ratings for all arguments that are sensitive to the
particular parameter settings. We have an intuitive sense
for what the values of these parameters ought to be based
on our knowledge about the world. Transmission should be
probabilistic (as opposed to deterministic), with a reason-
able probability of contracting a disease if exposed, and
we find that fits between model predictions and human
data are best when the transmission rate is in the range
of 0.4–0.6 (see Fig. 8). Similarly, the mechanism of trans-
mission should explain the majority of outbreaks, so the
background rate should be low, and we find that model fits
peak at a background rate of 0.1 and decrease monotoni-
cally as the parameter value increases.

We find the strong quantitative and qualitative fits be-
tween the model predictions and human generalizations
promising. However, these experiments were conducted
under highly simplified conditions where only food web
knowledge was available. One important difference be-
tween participants in these experiments and real-world
reasoning is that food web knowledge must be chosen from
among many potentially relevant kinds of knowledge, as in
Experiment 1, and we turn to an experiment designed to
address this issue.
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7. Experiment 3: Contrasting domain theories

In this experiment, we extended the scenarios used in
Experiment 2 by replacing the blank labels with names of
known biological species (see Fig. 2). Thus, people had
knowledge of both taxonomic and food web relations
among species to draw upon in reasoning, allowing us to re-
visit the context-sensitive reasoning found in the first
experiment. To do so, we manipulated the kind of property
people made inferences about: participants reasoned about
either a novel disease or a novel gene. Based on previous
work (Shafto & Coley, 2003) and the results of Experiment
1, we expect that inferences about diseases will be guided
by knowledge about food web relations, while inferences
about genes will be guided by taxonomic knowledge.

To model inferences drawing upon these different kinds
of knowledge, we contrast the predictions of two models of
domain theories: our Bayesian model of causal transmis-
sion, and a previously described Bayesian model of taxo-
nomic reasoning (Kemp & Tenenbaum, 2003). These
models both use the same Bayesian inferential machinery
and differences in predictions therefore depend on the dif-
ferent priors used by the two models.

7.1. Method

7.1.1. Participants
Forty-two people participated in this experiment, 21 in

the disease condition and 21 in the gene condition. Partic-
ipants either received course credit or a small monetary re-
ward in exchange for participation. Participants were
drawn from the same population as in Experiment 2.

7.1.2. Materials
In this experiment, two domain structures were pro-

vided for each scenario: a food web and a set of taxonomic
relations. Real animal names (e.g. ‘‘Wolf”) were used in-
stead of the blank animals (e.g. ‘‘Animal A”), and color pic-
tures of the animals appeared on the training cards. The
food web relations were structurally the same as in the pre-
vious experiment (see Fig. 2). The experiment used known
animal species, and exploited people’s intuitive knowledge
about taxonomic relations. Training cards included both
immediate food web relations (e.g. ‘‘Wolves eat bobcats,
squirrels, and woodchucks” and ‘‘Wolves are eaten by
mountain lions”) and immediate taxonomic relations (e.g.
‘‘Wolves and fox are both canines”). For the island condi-
tion, the taxonomic labels used on the cards were mammals
(human and dolphin), sharks (mako shark and sand shark),
fish (herring and tuna), and plant (kelp). For the mammals
condition, the taxonomic labels used on the cards were ca-
nines (fox and wolves), felines (bobcat and lion), and ro-
dents (squirrel, woodchuck and wolverine).2 Taxonomic
questions were also added to the familiarization test (see
2 Scientifically, wolverines are not rodents. However, we are interested in
intuitive taxonomies, and in keeping with the distinctions present in the
taxonomies derived from subjects’ similarity judgments, we labeled the
node corresponding to squirrels, woodchucks and wolverines. An informal
survey suggested that ‘‘rodent” was the most appropriate label.
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Appendix B for the full set of questions for the mammals
scenario).

7.1.3. Procedure
The experimental procedures were identical to the pre-

vious experiment with minor exceptions. First, the pre-
tests included taxonomic questions. Second, participants
were randomly assigned to a disease or gene condition.
In the gene condition, the induction task contained ques-
tions of the form, ‘‘Bobcats have gene XR-34. How likely
is it that lions have gene XR-34, like bobcats?” The disease
condition questions were analogous to the questions in the
previous experiment. Also, color images of the animals in
the questions appeared on the screen with the question.
Three participants failed the pre-test, and were dropped
from the experiment. Also, one participant volunteered
that she had used the rating scale backwards, and her re-
sponses were inverted. All other aspects of the experi-
ments were the same.

7.2. Results and discussion

Model predictions were again compared to human
judgments. For the causal model, predictions were derived
using the same parameters as in the previous experiment.
The taxonomic tree was constructed from similarity rat-
ings obtained from a separate group of participants who
went through the same training. Fits for the taxonomic
model were robust across parameter values, and the muta-
tion parameter was set to 0.1.

We computed correlations for both models on both
property conditions. Results indicate a double-dissociation,
with predictions of the causal model fitting generalizations
of diseases (r = 0.84 and 0.81, see Fig. 9, left panel) but not
genes (r = 0.33 and �0.10, see Fig. 9, right panel) and the
taxonomic model fitting generalizations of genes (r = 0.91
and 0.90, see Fig. 10, right panel) but not diseases
(r = 0.27 and 0.12, see Fig. 10, left panel).3

We also analyzed the data for the qualitative effects:
causal asymmetry, causal distance, and taxonomic dis-
tance. Again, results were collapsed over the two scenarios
and are based on the participants’ mean ratings for items
3 Kendall sb correlations found associations of 0.66, 0.55, 0.28, and 0.03
for the transmission model and 0.79, 0.45, 0.30, and 0.14 for the taxonomic
tree model. Similar numbers were obtained when analyses were conducted
on medians (rather than means).
that are relevant to that comparison. We expect the causal
effects to hold only in the disease condition, and the taxo-
nomic effects to hold only in the gene condition.

To test causal asymmetry, we compared generalizations
from prey to predators to generalizations from predators to
prey (see Fig. 11). There was a significant difference based
on direction for diseases, with inferences up the chain
(Meanup = 2.86, Medianup = 2) stronger than inferences
down the chain (Meandown = 4.30, t(25) = 11.98,
p < 0.0001; Mediandown = 4.5, U(13,13) = 0, p < 0.0001). Re-
sults from the gene condition indicate no asymmetry,
(Meanup = 3.43, Meandown = 3.68, t(24) = 0.56, p > 0.50;
Medianup = 4.5, Mediandown = 5, U(13,13) = 71.5, p > 0.20).

To test causal distance one-link generalizations were
compared to two-link generalizations, which were com-
pared to three-link generalizations. Results from the dis-
ease condition indicate a significant effect: one-link
generalizations (Mean1 = 2.86, Median1 = 2) were rated
more likely than two-link generalizations, (Mean2 = 4.51,
t(21) = 15.75, p < 0.0001; Median2 = 4.5, U(13,10) = 114,
p < 0.005) and two-link generalizations more likely than
three-link generalizations (Mean3 = 5.33, t(10) = 2.54,
p < 0.05; Median3 = 5.75). Results from the gene condition
indicate no causal distance effect, as predicted: one-link
generalizations (Mean1 = 4.56, Median1 = 4.5) were not dif-
ferent from two-link generalizations (Mean2 = 4.92,
t(21) = 0.86, p > 0.40; Median2 = 5.75, U(13,10) = 88,
p > 0.05), and two-link generalizations were not different
than from three-link generalizations (Mean3 = 5.83,
t(10) = 0.85, p > 0.40; Median3 = 6.5).

The qualitative prediction of the taxonomic model, that
inference strength should decrease with increasing taxo-
nomic distance, was also tested. To test the effect of taxo-
nomic distance, we collapsed arguments from both
scenarios into three groups based on distance in the taxo-
nomic hierarchy, and labeled the groups with numbers
representing ordinal distance in the taxonomy (see
Fig. 2). Pairs such as herring and tuna, dolphin and human,
wolf and fox, and squirrel and wolverine were labeled with
as distance one pairs. Herring and mako, and wolf and wol-
verine were labeled as distance two pairs. Kelp and her-
ring, and lion and wolf were labeled as distance three
pairs. Results from the gene condition show a significant
effect of taxonomic distance. Generalizations between dis-
tance one pairs (Mean1 = 2.62, Median1 = 2) were stronger
than generalizations between distance two pairs
(Mean2 = 4.97, t(50) = 24.81, p < 0.0001; Median2 = 5,
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U(16,36) = 576,p < 0.001) and generalizations between dis-
tance two pairs were stronger than generalizations be-
tween distance three pairs (Mean3 = 5.33, t(66) = 3.08,
p < 0.01; Median3 = 5.75, U(32,36) = 745, p < 0.05). Results
from the disease condition show no significant differences
(Mean1 = 4.36, Mean2 = 4.60, t(50) = 0.46, p > 0.40; Med-
ian1 = 4.5, Median2 = 5.5, U(16,36) = 319.5, p > 0.05;
Mean3 = 4.90, t(66) = 1.22, p > 0.20; Median3 = 6,
U(32,36) = 696, p > 0.05).

Fig. 12 shows model fits to human data across a range of
parameters. Fits for the causal transmission model peak for
medium values of the transmission rate and low values of
the background rate, in agreement with our intuition that
transmission should be probabilistic and suggesting that
model fits are best without much noise. Similarly, the tax-
onomic model performs best for low values of the muta-
tion parameter, suggesting that the model structure is
important to the fit of the model. The sensitivity of model
fits to variations in the parameter settings emphasizes the
fact that different parameter settings imply different priors
and different predictions about the relative strengths of
arguments.

These results provide further support for our causal
model. Across four data sets, the model shows strong cor-
relations with human reasoning about novel diseases, with
correlations in all cases greater than 0.75. The causal model
also predicts two qualitative phenomena observed in all
three experiments. Additionally, the best-fitting values
for the parameters correspond to our intuitions about dis-
ease transmission in the world.

The observed differences between people’s reasoning
about genes and diseases provide additional evidence that
a single kind of knowledge cannot account for reasoning
in the domain of biology (see also Heit & Rubinstein,
1994; Shafto & Coley, 2003; Smith, Shafir, & Osherson,
1993). Previous models have only captured reasoning about
taxonomic properties relying on combinations of similarity
and taxonomic knowledge, but human reasoning is more
varied than can be accounted for with this information
alone. Though in this paper we have pitted predictions of
the causal transmission and taxonomic models against
each other, this mutually exclusive approach to reasoning
is also likely to be too simple to account for human infer-
ences. Our qualitative and quantitative results have shown
that, in our experiments, people tended to draw upon either
causal or taxonomic knowledge. However, our main point
is that both kinds of knowledge are necessary, and for this
purpose it is sufficient that people draw primarily on food
web or taxonomic knowledge to guide inferences about
these properties. It is unlikely that human reasoning always
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draws upon one single kind of knowledge, and we are
working toward methods of integrating qualitatively
different kinds of knowledge (Kemp, Shafto, Berke, &
Tenenbaum, 2006). Additional knowledge structures are
also probably necessary. Exactly how many different kinds
of knowledge are sufficient to account for human reasoning
will vary by domain and the experience of the person or
group, but we are optimistic that a small set of models will
emerge that are important across a wide range of domains.

More generally, these results highlight a strength of our
Bayesian approach: the ability to support inferences based
on different kinds of prior knowledge in a single inferential
framework. Because our models capture knowledge about
different kinds of relations among entities, they generate
different prior distributions over hypotheses. Combining
these domain-specific beliefs with domain-general infer-
ence results in qualitatively different generalizations. Our
Bayesian approach provides a natural framework in which
to explore the effects of different prior beliefs on
inferences.

8. General discussion

We have presented a Bayesian model of reasoning
about causal transmission. In Experiment 1, we showed
that undergraduates spontaneously use knowledge about
food web relations to support reasoning about causal
transmission. In Experiment 2, we showed that the model
provides good quantitative fits to human generalizations
over food webs, and predicts two qualitative phenomena.
In Experiment 3, we highlighted the importance of differ-
ent domain theories in human reasoning. We showed a
double-dissociation between the predictions of models of
causal transmission and taxonomic knowledge and human
generalizations of diseases and genes. The causal transmis-
sion model provides good quantitative and qualitative fits
to human reasoning about diseases, but not genes. Simi-
larly, the taxonomic model provides good quantitative
and qualitative fits to human reasoning about genes, but
not diseases. Together these results provide strong support
for our model of causal transmission, illustrate the impor-
tance of different kinds of knowledge in inductive reason-
ing, and demonstrate the promise of our theory-based
Bayesian framework as an approach to modeling human
inductive reasoning.

More broadly, we have shown that for two different kinds
of properties, a prior that approximately describes how
properties of that kind actually vary over categories in the
world provides a good fit to people’s judgments, while priors
that describe the distribution of other kinds of properties do
not fit human judgments well. Our evidence suggests that
people are able to understand the appropriate domain theo-
ries and use them in the appropriate contexts to guide infer-
ences – at least for two kinds of properties that are likely to
be of some ecological significance.

Beyond these specific findings, our work advances
understanding of property induction and the role of intui-
tive theories in several ways, which we will elaborate in
the following sections. First, we compare our results with
previous empirical work on context-sensitive reasoning.
Second, we emphasize the importance of theories in con-
straining inductive reasoning by contrasting our model
with previous formal approaches to property induction.
Third, we discuss methods of approximating full Bayesian
inference and suggest algorithmic-level implementations
of our framework, in the spirit of Marr’s levels of analysis
(Marr, 1982). Fourth, we contrast our theory-based
Bayesian approach with previous formal models of theo-
ries. While far from complete, we argue that they capture
important aspects of people’s theories. We then conclude
by outlining some of the remaining challenges in develop-
ing a complete model of context-sensitive property
induction.

8.1. Empirical studies of property induction

Our results are consistent with previous studies demon-
strating context-sensitive reasoning in the domain of biol-
ogy, and offer insight into the basis of context-sensitive
reasoning across domains. In the domain of biology, previ-
ous work found that experts but not novices used taxo-
nomic knowledge and knowledge about food web
relations to flexibly guide inferences (Shafto & Coley,
2003). Our results suggest that the lack of context-sensi-
tive reasoning by novices was not due to a qualitative dif-
ference in experts’ and novices’ concepts of disease
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transmission. Rather, our results show that undergradu-
ates use causal knowledge to guide inferences about famil-
iar food web relations (cf. Medin et al., 2003) and novel
scenarios, consistent with a multi-level theory of causal
transmission where specific knowledge about the exis-
tence of a relationship exists at a concrete level, and more
abstract knowledge about when and how causal transmis-
sion applies exists at an abstract level.

Previous research studying reasoning in the domain of
biology has also demonstrated context-sensitive reasoning
about properties such as ‘‘can bite through wire” (Smith
et al., 1993), and anatomical versus behavioral features
(Heit & Rubinstein, 1994). Natural extensions of our frame-
work apply to each of these cases. Inferences about
strength related properties such as ‘‘can bite through wire”
may depend on a linear representations of the dimension
of strength; because dobermans are stronger than poodles,
if poodles can bite through wire, dobermans probably can
too. Inferences about the anatomical features in Heit and
Rubinstein (1994) can be modeled with a taxonomic tree,
as in our Experiment 3. Similarly, behaviors often develop
in response to environmental pressure, and inferences
about behavioral properties can be modeled by distribu-
tions over ecological categories like land predators, ocean
prey, aerial predators, etc. (see Shafto, Kemp, Mansinghka,
Gordon, & Tenenbaum, 2006). Our framework provides a
natural way to model these knowledge-based inferences
and extending our framework to handle a wider variety
of inductive contexts is an important area of future work.

A Bayesian approach can help explain the computa-
tional principles that support context-sensitive reasoning
about different properties. This goes beyond the capacities
of previous models, capturing a fundamental aspect of hu-
man reasoning – drawing upon different kinds of knowl-
edge in different inferential contexts. Importantly, the
model also provides strong correlations to people’s intui-
tive judgments in these contexts. Our model, however, is
an initial proposal and may need to be refined to fit empir-
ical data more closely. Two challenges will be incorporat-
ing phenomena like the inclusion fallacy, where people
rate an argument with a more general conclusion (e.g.
bird) stronger than arguments with a more specific, atypi-
cal member of that category (e.g. ostrich), and violations of
screening off, where for a causal chain A ? B ? C, people
judge inferences from A and B to C to be stronger than
inferences from B to C. One way general way to incorporate
these phenomena into a Bayesian approach is to model
more closely the assumptions that people bring to the task;
for example, softening the model’s interpretation of the
meaning of ‘‘all” in the case of the inclusion fallacy, and
modeling unobserved latent causes (c.f. Rehder & Burnett,
2005) or inferring the causal power from the number of
examples for violations of screening off. Such refinements
may be able to account for some of the phenomena that
have been traditionally difficult for Bayesian approaches,
and these are very important areas of future work.

8.2. Previous formal accounts of property induction

Previous formal models of property induction have fo-
cused on reasoning based on taxonomic knowledge. In this
section, we discuss two representative models, the similar-
ity-coverage (Osherson et al., 1990) and Sloman’s feature-
based model (Sloman, 1993). It has been argued that nei-
ther of these models cannot explain aspects of inductive
reasoning, but the notions of a similarity metric or set of
features are notoriously flexible and these are appealing
languages for providing psychological descriptions of rea-
soning. It is important to note that neither of these ap-
proaches was designed with multiple contexts in mind,
but it remains an important question whether the power
of theory-based representations necessary, or could the
different kinds of reasoning displayed here be explained
more simply in one of these models – if only it is allowed
to choose an appropriate similarity metric or set of
features?

The similarity-coverage model obtains good fits to hu-
man reasoning based on taxonomic knowledge; indeed,
the fits to our data were quantitatively comparable to those
obtained by our taxonomic model (see Tenenbaum, Kemp, &
Shafto, 2008). However, similarity-based models do not of-
fer a simple way of accounting for reasoning based on causal
knowledge. Even if similarity is allowed to vary based on
context (e.g. Heit & Rubinstein, 1994), context-specific sim-
ilarities cannot naturally account for the causal phenomena
presented here because food web relations do not confer
similarity in any traditional sense, and similarity does not
demonstrate the strong asymmetries characteristic of the
inferences in our studies. In contrast, our theory-based ap-
proach offers efficient representation for each context
through the combination of a single structure with a small
number of stochastic parameters (for causal transmission,
a web plus two parameters). Additionally, our approach
achieves greater generality by considering inferences in
terms of hypotheses about possible extensions of the prop-
erty; for example, allowing our models to make inferences
based on knowledge beyond simple similarities (such as
causal knowledge).

The feature-based model represents prior knowledge in
terms of a category-by-feature matrix, where for each cat-
egory each feature is either present or absent. Unlike the
similarity-coverage model, the feature-based model may
be able to account for reasoning about causal transmission
given the right set of features. We can see why by observ-
ing an analogy between our Bayesian models and a fea-
ture-based approach. Hypotheses in our Bayesian models
are analogous to features in a feature-based approach:
each hypothesis or feature can be identified with a subset
of categories in the domain, as the extension of that
hypothesis or feature. The stochastic process we give for
generating hypotheses according to some specified prior
distribution (see Fig. 3) can then be thought as a process
for generating features with some specified weights. Con-
sider a category-by-feature matrix where features are sam-
pled from the prior used by our model. For a fixed set of
categories, this matrix would represent the same inductive
potential as our priors because both would be generated by
the same theory. In addition, our Bayesian inference rule
(see Eq. (2)) can be interpreted as a measure of weighted
feature overlap (see Tenenbaum & Griffiths, 2001). In light
of this correspondence, our results and feature-based ac-
counts of inductive generalizations are not incompatible.



4 The exact relationship between the increase in memory needed as the
number of objects increases depends on how many connections a new
object has to the existing structure. In the worst case, the maximum
number of relations needed for a directed acyclic graph is (n � 1)!, which
still grows more slowly than the naïve case, 2n. The cases we are interested
are generally quite far from the worst case, so the advantage of our
approach is typically more marked than is evident in this worst-case
scenario.
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The reason we are not satisfied with traditional feature-
based models is that they do not represent the abstract
knowledge needed to generate the relevant features and
feature weights. Real-world inference cannot be accounted
for by knowledge about object-feature co-occurrences
alone. Consider, for example, the case of a scientist who
lives on an island where the local food web is represented
by Fig. 2a. Suppose that the scientist has recorded the dis-
tribution of one thousand different diseases, and (possibly
unknown to him), the distribution closely matches the dis-
tribution predicted by our generative model. When asked
the disease questions in Experiment 3, the scientist’s re-
sponses match our model perfectly, but we cannot con-
clude that he has our theory; perhaps he is using the
feature-based model over the data he has collected. Sup-
pose, however, we ask the scientist a counterfactual ques-
tion: we ask him about an ecosystem that is identical
except that now people eat kelp, and makos do not eat
tuna. A scientist with our theory of causally transmitted
properties will have no trouble, but a scientist without
the theory will be lost. While our experiments do not di-
rectly address this counterfactual question, we believe that
people will respond flexibly when asked to reason about
counterfactuals, or when otherwise given information that
alters an underlying theory. Indeed, the ability to sponta-
neously alter a theory and use it to guide inferences is fun-
damental to the success of our experiments in which
participants were asked to make inferences about novel
food web relations. Since the species used in these experi-
ments were novel, participants could not rely on a set of
previously observed features, and the knowledge they used
seems better characterized as a simple theory than as a
collection of features.

Reasoning about causal transmission highlights inade-
quacies in both similarity and feature-based accounts of
induction. Models based on similarity cannot naturally
represent the asymmetric causal relations that are funda-
mental to reasoning about causal transmission. Models
based on object-feature co-occurrences do not provide a
means of abstracting from experience to theories about
the world that are fundamental to reasoning about spar-
sely or previously unobserved instances.

Our theory-based Bayesian framework aims to fulfill
the promise of proposals for a general purpose hypothe-
sis-driven framework for inductive reasoning. Previous
research has suggested that high-level explanations of-
fered by hypotheses play a role in inference (McDonald,
Samuels, & Rispoli, 1996). Other work has suggested that
the Bayesian formalism may be used to generate infer-
ences over hypothesis-based representations (Heit,
1998). Our contribution is to formalize how intuitive the-
ories can be integrated with Bayesian hypothesis-based
reasoning. We have demonstrated two instantiations of
this theory-based framework for inferences based on
taxonomies and asymmetric transmission over causal
webs. Both our domain theories and Bayesian inferential
mechanisms can be extended to other kinds of knowl-
edge and richer inferential settings. We consider this to
be a crucial aspect of any framework for investigating
human reasoning: if we are to understand human rea-
soning, we must consider models expressive enough to
make predictions across the many different situations
that people face.

8.3. Cognitive plausibility and rational inference

Our goal in this paper has been to present a computa-
tional analysis of reasoning about causal transmission.
Here, we consider the cognitive plausibility of our model
and potential algorithmic implementations. There are
two aspects of our models whose plausibility may be eval-
uated independently: representation and inference.

On first glance, the problem of representing prior
knowledge in a Bayesian framework seems impossible for
all but small cases: for any set of n objects, the number
of potential hypotheses is 2n. Under the most naïve ap-
proach, each hypothesis could be explicitly represented
along with a number corresponding to our belief in the
hypothesis. The amount of memory required to store this
information increases exponentially with the number of
objects, rendering this approach untenable. However, a
central feature of our theory-based priors is representation
based on composable graphical units, dramatically reduc-
ing the amount of memory required to represent prior
knowledge. In the case of web representations, we only
need the structure of the web and two parameters. This ap-
proach scales reasonably with increasing numbers of ob-
jects: regardless of the number of objects, only two
parameters and a representation of the food web relations
are required.4 Our representation of prior knowledge is
therefore very efficient, and potentially plausible at an algo-
rithmic level of analysis.

There remains the problem of generating inferences
from theory-based representations. Exact inference is
intractable for Bayesian networks in general (Cooper,
1990). Accordingly, there are a variety of algorithms that
have been developed to approximate full Bayesian infer-
ence with significantly reduced computational demands.
Two such methods with analogs in the psychological liter-
ature are likelihood weighting and belief propagation.
Likelihood weighting works by formalizing the intuition
that people reason by simulating one or a few possible
worlds (cf. Johnson-Laird, Legrenzi, Girotto, Legrenzi, &
Caverni, 1999). Belief propagation formalizes the intuition
that inferences over a network may be generated by a kind
of spreading activation between connected nodes (cf.
Collins & Quillian, 1972). Developing a plausible algorith-
mic level account of reasoning remains an open problem
(see Anderson, 1991; Sanborn, Griffiths, & Navarro, 2006),
but we believe that the existence of good approximate
algorithms is promising in itself, suggesting that there
are plausible ways to arrive at approximately rational
inferences with limited resources.
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8.4. Theories of theories

Previous work has described intuitive theories with a
variety of forms, from the highly articulated knowledge
structures proposed by Carey (1985) to the more skeletal
frameworks proposed by Wellman and Gelman (1992).
We do not claim to be modeling all or even most of the
content of intuitive theories; however, we believe that
our models go beyond previous work in capturing some
important content of people’s intuitive theories.

Previous investigations of theory-like knowledge have
addressed the role of theories in organizing knowledge
within a category (e.g. Ahn, 1998; Rehder, 2003;
Waldmann, Holyoak, & Fratianne, 1995). Unlike our work,
which focuses on causal relations between categories,
these studies involve causal relations among features of
categories, and treat representations of categories as min-
iature causal theories. Our approach focuses on intuitive
domain theories – conceptual frameworks that organize a
system of categories and describe how properties are
distributed within that domain. Each of these views has
precedent in the literature (Carey, 1985; Murphy & Medin,
1985; Wellman & Gelman, 1992), and each provides
insight into different roles of intuitive theories.

Our approach, based on modeling intuitions about real-
world domains, also contrasts with previous experiments,
which have relied on artificial stimuli and features (e.g.
Rehder, 2003; Rehder & Burnett, 2005; Rehder & Hastie,
2001). In these previous studies, stimuli were completely
novel and features were explicitly chosen such that people
would have no a priori beliefs about plausible causal rela-
tions. Participants were then taught different kinds of cau-
sal relations among the features and, when given different
causal relations among features, categorized and reasoned
differently. However, because the causal relations were
arbitrary, these tasks are unlikely to tap into people’s dee-
ply held intuitive theories, with domain-specific knowl-
edge and causal laws, that guide everyday reasoning and
are the focus of our work.

Our experiments, in contrast, call on people to use their
theories of a real-world domain, and thus provide a means
to study the intuitive theories that guide everyday reason-
ing. We taught participants a novel set of food web rela-
tions, but this relational structure alone was not
sufficient to predict disease incidence. To perform this pre-
diction task, people must have been able to draw on more
abstract, pre-existing knowledge about the domain of biol-
ogy, and in particular, on their intuitive theories of disease
transmission. For example, people must have used prior
knowledge to infer that susceptibility to disease depends
on a species’ location in a directed network of predator–
prey relations, that a single exposure is probabilistically
sufficient for transmission, and that diseases can be
picked-up from within the network or from outside causes.
Because we allowed people to use their knowledge about
the world to guide inferences, we can conclude that these
aspects of our model correspond to people’s intuitive the-
ories about disease transmission – abstract knowledge that
can be applied to novel problems.

Of course, this work has focused specifically on the role
of theories in property induction, and our formalizations
are likely simpler than people’s theories even in the con-
strained settings we explored. For instance, evidence sug-
gests that concepts such as resistance and susceptibility
play an important role in some people’s reasoning about
diseases (e.g. Proffitt et al., 2000). The success of our mod-
els suggests that capturing only the core elements of theo-
ries can go a long way toward predicting people’s
inferences. Nevertheless, continued work will focus on
modeling more of the detailed domain knowledge that
supports human reasoning.

We have applied our model to a single case of property
transmission, disease transmission among species; how-
ever, this basic computational model applies generally to
problems of reasoning about causal transmission. As such,
the model can be directly applied to problems such as rea-
soning about the transmission of beliefs, secrets, and fads.
Importantly, though the basic model is generally applica-
ble, we expect that aspects of both the model and people’s
theories should vary when applied to different problems.
For example, the values of the transmission rate should
be higher when reasoning about the distributions of beliefs
than when reasoning about the distribution of secrets
(assuming people actually keep secrets). Also, if applied
to problems such as reasoning about the transmission of
recessive traits from parents to children, we would expect
different beliefs about the causal mechanism. In the case of
transmission of properties such as having blue eyes, we ex-
pect that causes do not act independently: a child must in-
herit the trait from both parents, as described by a noisy
and causal mechanism.

8.5. Towards a model of context-sensitive reasoning

Context-sensitive reasoning is considered a develop-
mental milestone in many domains, and is a fundamental
aspect of human intelligence. We have presented models
of inference in two contexts, taxonomic properties and
causally transmitted properties; however, much work re-
mains to reach the overall goal of fully context-sensitive
reasoning about different kinds of properties. First, addi-
tional models of different kinds of knowledge need to be
developed, and existing models should be applied to differ-
ent domains. Second, we have assumed that people already
have different kinds of theoretical knowledge, for example,
that people have knowledge about the structural relations
and probabilistic processes implemented in our theories. It
is important and necessary to show how multiple domain
theories can be learned. Finally, we have assigned which
theories apply to which contexts; for example, we speci-
fied that a causal theory applies to reasoning about dis-
eases. People, however, infer which knowledge applies in
which contexts, and future work will be directed at devel-
oping models that match this ability.

Like most important problems, context-sensitive induc-
tion should repay investigation before we understand it
completely. By attempting to model multiple contexts,
we can begin to understand the computational principles
that support the scope and flexibility of human reasoning.
Our work has emphasized principles like Bayesian infer-
ence and the importance of structured representations that
apply to both of the contexts we considered, and suggests
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that modeling several contexts simultaneously may reveal
insights that are not obvious when modeling each context
in isolation. The ultimate goal of this line of work is to un-
cover principles that explain the different patterns of infer-
ence observed in different inductive contexts. Much work
remains, but our formal framework suggests how we can
make progress towards this goal.

Appendix A. Formal derivation of qualitative
predictions for the causal transmission model

Our experiments test two main predictions of the causal
transmission model: causal asymmetry and causal distance.
Recall that the causal transmission model has two param-
eters. Let t denote the transmission rate and b denote the
background rate. Throughout this section, we will assume
that all probabilities are strictly greater than 0, which will
be true whenever t and b are both greater than 0.

We will show that the causal asymmetry and causal
distance effects are always predicted for simple network
structures, regardless of the model’s parameter values.
For more complex network structures these effects may
not always be predicted, but our analysis here suggests
when they can be expected to hold. We have verified by
simulation that these predictions hold for all of the net-
works used in our experiments, at the best-fitting parame-
ter values. We have also verified that the predictions are
robust with respect to changes in the parameters. As long
as neither parameter is set to 0 or 1, both causal asymme-
try and causal distance effects are always predicted to hold
on average. That is, when we average across all relevant
arguments, the model predicts that these effects will go
in the appropriate direction, even if they do not necessarily
go in the predicted direction for every individual
argument.

Causal asymmetry. We first analyze the most basic case
where the causal asymmetry effect should hold, a two-
node causal chain X ? Y. The variable X indicates whether
the prey species has a property, Y indicates whether the
predator species has the same property, and the arrow de-
notes a route of causal transmission from prey to predator.
Causal asymmetry obtains whenever
p(Y = 1jX = 1) P p(X = 1jY = 1). The right side of this expres-
sion can be expanded following Bayes rule to give

pðY ¼ 1jX ¼ 1ÞP pðY ¼ 1jX ¼ 1ÞpðX ¼ 1Þ
pðY ¼ 1Þ :

This inequality holds whenever p(Y = 1) P p(X = 1), which
will always be true because of the parameterization of
the food web model. The predator and prey species are
equally likely to acquire the property because of the back-
ground process, but the predator has some additional
probability of acquiring the property from the prey. More
formally, we can expand p(Y = 1) by conditioning on the
values of X, to give the following condition that must hold
for causal asymmetry to be predicted:

pðY ¼1jX¼1ÞpðX¼1ÞþpðY ¼1jX¼0ÞpðX¼0ÞP pðX¼1Þ:

Note that p(X = 1) = p(Y = 1jX = 0) = 1 � p(X = 0) = b, so the
condition becomes
pðY ¼ 1jX ¼ 1Þ � bþ b� ð1� bÞP b:

This inequality is satisfied if p(Y = 1jX = 1) P b, which holds
for any parameter values. Specifically, if the prey has some
property than the probability p(Y = 1jX = 1) that the preda-
tor has that same property is b + (1 � b) � t: with probabil-
ity b, the predator gets the property from the background
process, and with probability (1 � b) � t, the predator fails
to get the property from the background process but does
get it through transmission from the prey.

For more complex networks, causal asymmetry may not
always hold. It will hold if the network includes more
causes of Y, in addition to X. But if there are also causes
of X – that is, if the prey itself is a predator – causal asym-
metry may not hold. For instance, if X has very many
causes while Y has very few causes, and if the transmission
and background rates are low, the inequality p(Y = 1) P
p(X = 1) (and hence causal asymmetry) may no longer hold.
Another way causal asymmetry can fail is if we allow the
background rate to vary across nodes, and that rate hap-
pens to be much higher for the prey than for the predator.
Neither of these cases however, applies to the networks
and best-fitting parameter values for our experiments.

Causal distance. We first analyze the most basic case
where the causal distance effect should hold, a three-node
causal chain X ? Y ? Z. Causal distance obtains whenever
p(Y = 1jX = 1) P p(Z = 1jX = 1). The right side of this expres-
sion can be expanded by conditioning on Y, and noting that
X and Z are conditionally independent given Y:

pðY ¼ 1jX ¼ 1ÞP pðZ ¼ 1jY ¼ 1ÞpðY ¼ 1jX ¼ 1Þ
þ pðZ ¼ 1jY ¼ 0ÞpðY ¼ 0jX ¼ 1Þ:

Now, let q = p(Y = 1jX = 1) = p(Z = 1jY = 1); these are equal if
X is the only cause of Y, Y is the only cause of Z and the
background and transmission rates are assumed to be the
same over the whole network. Then the critical inequality
becomes

q P q� qþ b� ð1� qÞ:

This inequality is satisfied whenever q P b, but as we
showed above for causal asymmetry, that is always true;
q is just b + (1 � b) � t.

Causal distance does not necessarily hold for more com-
plex networks. For example, it can fail if there are paths be-
tween X and Z that do not go through Y, or many additional
causes of Z that do not influence Y. Exactly when causal
distance fails will depend on these structural factors as
well as on the values of the background and transmission
rates. We have verified experimentally that causal distance
holds for the networks and best-fitting parameter values in
our experiments.

Appendix B. Pre-test questions: Experiment 3,
mammals scenario

True statements:
Mountain lions eat wolves.
Mountain lions eat wolverines.
Wolverines eat fox.
Wolves eat squirrels.
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Wolves eat woodchucks.
Wolves eat bobcats.
Mountain lions eat wolverines.
Mountain lions eat wolverines.
Mountain lions eat wolverines, which eat fox.
Mountain lions eat wolves, which eat bobcats.
Mountain lions eat wolves, which eat squirrels.
Mountain lions eat wolves, which eat woodchucks.
Mountain lions and bobcats are both felines.
Wolves and fox are both canines.
Wolverines and squirrels are both rodents.
Squirrels and woodchucks are both rodents.
Woodchucks and wolverines are both rodents.
False statements:
Bobcats eat wolves.
Mountain lions eat woodchucks.
Wolves eat mountain lions.
Wolverines eat mountain lions.
Fox eat wolverines.
Mountain lions eat squirrels.
Fox eat wolves.
Woodchucks eat wolverines.
Mountain lions eat wolverines, which eat squirrels.
Mountain lions eat wolves, which eat fox.
Mountain lions eat bobcats, which eat squirrels.
Mountain lions eat squirrels, which eat fox.
Mountain lions and wolves are both felines.
Wolves and wolverines are both canines.
Bobcats and squirrels are both rodents.
Fox and woodchucks are both rodents.
Woodchucks and mountain lions are both rodents.
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