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Abstract

Much of learning and reasoning occurs in pedagogical situ-
ations – situations in which teachers choose examples with
the goal of having a learner infer the concept the teacher has
in mind. In this paper, we present a model of teaching and
learning in pedagogical settings which predicts what examples
teachers should choose and what learners should infer given a
teachers’ examples. We present two experiments using a novel
experimental paradigm called the rectangle game. The first
experiment compares people’s inferences to qualitative model
predictions. The second experiment tests people in a situation
where pedagogical sampling is not appropriate, ruling out al-
ternative explanations, and suggesting that people use context-
appropriate sampling assumptions. We conclude by discussing
connections to broader work in inductive reasoning and cogni-
tive development, and outline areas of future work.

Much of human learning and reasoning goes on in ped-
agogical settings. In schools, teachers impart their knowl-
edge to students about mathematics, science, and literature
through examples and problems. From early in life, parents
teach children words for objects and actions, and cultural and
personal preferences through subtle glances and outright ad-
monitions. Pedagogical settings – settings where one agent is
choosing information to transmit to another agent for the pur-
pose of communicating a concept – dominate human learning
and reasoning.

If learners’ assumptions about how teachers sample in-
formation reflected this purposeful sampling, then learners
might be able to make much stronger inferences in pedagog-
ical situations. Sampling assumptions are assumptions that a
learner makes about the source of data, in order to better in-
terpret the evidence for statistical learning. Recent research
suggests that even infants are sensitive to the sampling pro-
cesses that underlie observed data (Xu & Tenenbaum, 2007)
and young children make qualitatively different inferences
when data are sampled by a teacher (Gergely, Egyed, & Ki-
raly, 2007).

Computational models of human learning have not focused
on the sampling processes that generate observed data, and
when they do the assumed processes are relatively simple.
For example, Fried and Holyoak (1984) modeled category
learning by assuming examples are generated uniformly at
random (weak sampling) and Tenenbaum (1999) modeled
learning from positive data by assuming examples are gen-
erated at random from the true concept (strong sampling).

Even simple assumptions gain a lot for a learner. For ex-
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Figure 1: Possible rectangle game scenarios. The top row shows a
possible rectangle concept, and two possible pairs of examples that a
teacher might choose to communicate to a learner. The bottom row
shows possible examples a learner may observe, and two possible
guesses about what rectangle the teacher had in mind. The middle
column shows better choices than the right column.

ample, Xu and Tenenbaum (2007) showed that the strong
sampling assumption allows learning the meanings of words
from positive examples alone. However, neither weak nor
strong sampling captures the purposeful sampling that un-
derlies pedagogical situations. In this paper, we introduce a
pedagogical sampling model that formalizes which examples
teachers should give learners to most help them, and what
learners may infer from these helpful examples.

Consider a simple example which we call the rectangle
game: a game where the teacher thinks of a rectangle on a
board, and tries to communicate that concept to a learner by
choosing to label points inside and/or outside the rectangle
(cf. Tenenbaum, 1999). In the rectangle game, the learner’s
job is to try to infer, given the labeled examples chosen by
the teacher, what rectangle the teacher is thinking of. Fig-
ure 1 presents potential teacher and learner scenarios. In each
case, there seem to be choices which are obviously better than
others. As a person trying to teach someone the rectangle in
blue (top left), the examples in the middle panel seem better
than those on the right. Similarly, as a learner, given the ex-
amples in the bottom left, the rectangle in the middle panel
seems like a better guess than that on the right. Notice that in
both cases the examples on the top and the rectangles on the
bottom are possible, however, our intuition tells us that the
middle panels are better guesses than the right panels. Peda-



gogical sampling results in samples that are representative of
the concept (Tenenbaum & Griffiths, 2001), in contrast with
weak and strong sampling, which choose examples randomly.

In this paper, we formalize the problem of pedagogical rea-
soning from the perspectives of teacher and learner. For the
teacher, the problem is to choose the examples that will most
help the learner infer the correct concept. For the learner, the
problem is, given that the teacher is choosing helpful exam-
ples, infer the correct concept. In two experiments, we com-
pare model predictions to human behavior in a novel exper-
imental paradigm (the rectangle game), showing strong cor-
respondence between model predictions and human data. We
conclude by addressing implications of pedagogical sampling
and identifying areas of future work.

A computational model of pedagogical
sampling

We formalize pedagogical reasoning as an inference problem
based on the twin assumptions that learners and teachers act
as (approximately) rational agents. The rational learner as-
sumption is that a learner will update their beliefs, given new
examples, according to Bayesian inference (a description of
optimal belief updating),

p(h|d)learner ∝ p(d|h)teacher p(h). (1)

The rational teacher assumption is that teachers choose ex-
amples that tend to increase the learner’s beliefs in the correct
hypothesis. We may formalize this via a Luce decision rule
(Luce, 1959),

p(d|h)teacher ∝ (p(h|d)learner)α, (2)

where the steepness parameter α governs the greediness of
the teacher. (When α=0, pedagogical sampling recovers
weak sampling, as α becomes large the teacher chooses the
best examples.) Because Equations 1 and 2 are linked (with
the optimal teaching behavior depending on the learner, and
vice versa), rational pedagogical reasoning is a solution to
this system of equations. 1

To understand this model it helps to consider one way of
solving the system of equations: fixed-point iteration. Imag-
ine that you are the learner, and wish to update your be-
liefs. To do so you will need an estimate of the likelihood
p(d|h)teacher of seeing the examples you are given. You can
estimate this likelihood by assuming the teacher is rational—
Eq. 2—but to do this you need an estimate of the p(h|d)learner
used by the teacher. If you assume the teacher assumes that
you are rational, you can use Equation 1 as such an esti-
mate.... This recursive reasoning could carry on forever, but

1Solutions to this system of equations will depend on the
learner’s prior beliefs, p(h). For the current purposes, where we are
dealing with a completely novel game, we assume both the teacher
and the learner know that all hypotheses are equally likely. In gen-
eral, it is reasonable to assume that the teacher makes a reason-
able assumption about the learner’s prior. Interesting questions arise
when the teacher is uncertain or incorrect about the learner’s prior;
these questions are beyond the scope of this paper.

eventually the estimated values from repeatedly using equa-
tions 1 and 2 will no longer change—we then say that the
process has iterated to a fixed point, and this fixed point will
necessarily be a solution to the system of equations defining
rational pedagogical reasoning. Thus we can understand the
model as capturing the outcome of a recursive mental reason-
ing process, based on twin rational agent assumptions. How-
ever, it is worth emphasizing that rational pedagogical reason-
ing describes the outcome of this process (or rather the solu-
tion to the system of equations), and it is entirely possible that
this reasoning may be implemented by a psychological pro-
cess that doesn’t require any explicit recursive reasoning. 2

There is one additional complication in modeling the
teaching games used below. In addition to observing the loca-
tion of positive and negative examples, learners also observe
the strategy the teacher used – how many positive and nega-
tive examples they use. The learner can observe the strategy
chosen by the teacher, and we simplify by treating this choice
of strategy as uninformative. Inference for both teacher and
learner are then simply conditioned on the observed strategy
(number and kind of examples).

Applying this model to the examples in Fig. 1 results in
predictions that are consistent with intuition. In the case of
two positive examples, the prediction is that the teacher will
generally place examples in opposite corners of the rectangle,
and the learner will infer a rectangle such that the examples
are near opposite corners. To understand why this is a so-
lution to equations 1 and 2, consider the recursive reasoning
described above (idealized to avoid complications of uncer-
tainty): if the learner assumes that the teacher will choose ex-
amples at opposite corners, then Eq. 1 implies that the unique
inference made by the learner is the tightest rectangle around
two examples; if the teacher assumes that this is what the
learner is doing, then, according to Eq. 2, the teacher will
usually choose examples in opposite corners of the true rect-
angle. In the case of one positive example and one negative
example, the reasoning is similar: the learner assumes that the
teacher will choose a negative example close to the boundary
of the rectangle, enabling the learner to rule out larger rectan-
gles; in turn the teacher will chose such examples under the
assumption that this is how the learner will reason. We test
the model predictions in the following experiment.

Experiment 1: The rectangle game
In this experiment, people played the rectangle game de-
scribed in the introduction. People played the roles of teacher,
choosing the examples given a rectangle, and learner, guess-
ing a rectangle given examples. In our analyses, we will in-
vestigate how the models predict the qualitative and quanti-
tative patterns observed in the human data. For the teach-
ing task, we will ask whether the pattern of responses is ran-

2To compute model predictions we use the fixed-point iteration
formulation of the model. That is, we initialize with the learner as-
suming weak sampling, then iterate Equations 1 and 2 until conver-
gence. This is a straightforward, though computationally expensive,
algorithm.



dom, as predicted by weak and strong sampling. We will also
characterize people’s preferred pattern of responses, and ask
whether the pedagogical sampling model correctly predicts
the pattern of examples generated by people. For the learning
task, we will ask comparable questions: are learner’s infer-
ences consistent with the assumption that examples are ran-
domly sampled? If not, do learner’s inferences reflect knowl-
edge about the pedagogical nature of the data?
Method
Participants. 18 University of Louisville undergraduates
participated in exchange for course credit.

Design. The experiment consisted of two parts: teaching
and learning. Because pre-testing showed that participants
understood the learning task better when presented with the
teaching task first, the two parts were presented in fixed order.

Procedure. Experiments were run using MATLAB. Partic-
ipants were seated at a computer and told that they were go-
ing to learn about a game called the rectangle game. In the
game there is a teacher and a learner. It is the teacher’s job
to help the learner guess what rectangle he is thinking about
by choosing helpful examples, points that can be inside or
outside the true rectangle.

In the teaching task, participants were shown a rectangle
and asked to choose the best one, two, or three examples by
clicking on the screen. A green circle automatically appeared
if the click was inside the rectangle, and a red X if the click
was outside the rectangle. Participants were shown 90 rect-
angles of various sizes and positions. Order of presentation
of sizes and positions of the rectangles varied randomly.

In the learning task, participants were shown between one
and three examples and asked to draw the rectangle that they
thought the teacher was thinking of, by clicking on the screen
and dragging with the mouse. Examples were pre-chosen to
include all combinations of positive and negative examples.
Examples were generated based on a small set of patterns, and
position on the screen and distance between the examples was
randomized. The learning task consisted of 92 trials in total.
When participants completed the task, they were debriefed
and thanked.

Model implementation. To model the rectangle game, we
used a hypothesis space of rectangles based on a 6x6 dis-
cretized approximation to the full board. Hypotheses in-
cluded all rectangles from 2x2 up to 5x5, at all possible lo-
cations on the grid. 36 possible points, corresponding to all
possible blocks on the 6x6 board were considered. Exam-
ples were sets of positive, negative, or mixed pairs of these
points. To attempt to minimize strong boundary effects result-
ing from our discrete approximation, we modeled inferences
on an extended board upon which the rectangle or examples
were centered.

Results & Discussion
This experimental paradigm generates an extremely rich data
set. For teaching data, people could choose any point(s) on

(a) Positive examples

(b) Negative examples

Figure 2: Distributions of examples in the teaching task for (a) pos-
itive examples and (b) negative examples. Pictured from left to right
in each panel are the predictions of strong and weak sampling, the
observed human data, and the predictions of pedagogical sampling.
For the models, figures display the probability of an example in each
block. For human data, the proportion of positive examples in each
location is plotted. People strongly preferred to give positive exam-
ples in the corners of the rectangle and negative examples near the
boundaries, as predicted by pedagogical sampling.

the board. For the learning data, people could choose any
number of rectangles that vary in size and location such that
they are consistent with the observed examples. Analyzing
the data required collapsing across examples to achieve ad-
equate summaries of the patterns of behavior elicited. Also,
due to space constraints, we present only the subset of the
teaching and learning data that include two examples.

We will consider performance on the teaching task first,
then the learning task. For the teaching task, we will consider
whether people’s data conform to the predictions of weak and
strong sampling or pedagogical sampling by separately ana-
lyzing the distributions of the positive and negative examples.
We will then investigate the specific pairs of examples chosen
by people, and compare these to the pedagogical sampling
model.

Pedagogical sampling predicts that for positive examples,
examples in the corners are more informative than examples
in the middle, or along a single side. Both weak sampling
and strong sampling predict that positive examples are dis-
tributed uniformly at random. To test these predictions, we
analyzed the examples that people generated, dividing each
rectangle into a 3x3 grid. Grids were normalized based on
the size of the rectangle, so the grid was finer for smaller
rectangles than for larger ones. This allowed us to ignore
the size of the rectangle and focus on the relative position of
the examples. Frequencies of examples in each area of the
grid were tallied and the proportion of examples in each lo-
cation are shown in Figure 2a, middle panel. The left and
right panels show the locations predicted by weak sampling
and strong sampling (left) and pedagogical sampling (right).
Note that strong and weak sampling predict no differences
across locations – data should be distributed uniformly at
random. The examples people generated were highly non-
random, χ2(8) = 645.05, p < 0.0001. The pedagogical sam-
pling predictions, right panel, are based on an average over
all 3x3 hypotheses, and show that the model predicts a strong



Figure 3: Pairs of examples chosen in the teaching task for a ran-
domly chosen rectangle, divided by type of pair. The top row con-
tains pairs of negative examples, which are characterized by their
close proximity to the boundaries, generally on opposite sides or
corners. The middle row shows mixed examples marking a single or
opposite corners. The bottom row shows pairs of positive examples,
which are predominantly examples in opposite corners.

preference for positive examples in the corners of the rectan-
gle. A qualitatively similar pattern is observed in the human
data. Indeed, this qualitative correspondence is reflected in
a strong correlation between model predictions and human
data, r = 0.98.

For negative examples, pedagogical sampling predicts
strong effects of distance – the most helpful negative ex-
amples are those that are near the boundaries. Weak sam-
pling predicts that examples should be distributed uniformly
at random, while strong sampling makes no prediction. We
analyzed people’s choices by classifying examples based on
the relative distance from the boundary of the rectangle to
the outside of the board. For each of the four sides, we di-
vided the area from the edge of the rectangle to the edge
of the board into three bins. For one quadrant, the result
is 15 bins, 3 to each side of the rectangle of the rectan-
gle, and 9 for the intersection of these bins extending diago-
nally from the rectangle. The results are shown in Figure 2b.
The examples people chose were not randomly distributed,
χ2(14) = 1268.82, p < 0.0001. Again, the apparent qualita-
tive agreement is supported by a strong correlation between
model predictions and human data, 0.86.

Of primary importance from the perspective of our model
is which pairs of examples people choose. Figure 3 shows a
random subset of the data from a randomly chosen rectangle.
Examples have been divided into pairs of negative examples,
mixed example pairs, and pairs of positive examples. For the
negative pairs, people tend toward either choosing examples
on opposite corners or on opposite sides, and these are the
two most likely strategies according to the model. For mixed
pairs, people tend to either mark a single corner with a posi-
tive example on the inside and a negative example on the out-
side, or opposite corners. These, along with pairs that mark a
side on the inside and outside are most likely according to the
model. For positive pairs, people use the examples to mark
opposite corners. Pedagogical sampling very strongly pre-
dicts a preference for this strategy over other possible pairs of
positive examples.

The results of the teaching task suggest that people choose
particular examples to communicate different concepts. Of
equal importance is whether learners take advantage of this
knowledge to make stronger inferences. To answer this ques-

Figure 4: Results from the learning task. Plots show the positions of
the teacher’s examples, relative to the rectangles drawn by learners
for positive (left) and negative (right) examples. The results show
that learners clearly understand that teachers are sampling data ped-
agogically – positive examples indicate corners of the correct rect-
angle, and negative examples indicate the boundaries.

tion, we turn to the data from the learning task.
Pedagogical sampling predicts that learners’ should know

the strategies that the teacher will use to communicate differ-
ent concepts. Therefore, if learners use pedagogical knowl-
edge to guide inferences, we expect learners should draw rect-
angles that recover the patterns observed in the teaching data
(see Figure 2). However, weak and strong sampling pre-
dict that positive examples should be randomly distributed
with respect to the rectangles inferred by learners. Figure 4
shows the observed distributions for positive and negative ex-
amples, relative to the rectangles inferred by learners. To
test whether the examples where randomly distributed, we
computed the frequencies of different example locations rel-
ative to the inferred rectangle, as described for the teach-
ing task. The results indicate that the inferred rectangles
where not randomly positioned with respect the the positive
examples, χ2(8) = 104.37, p < 0.001, or negative examples,
χ2(14) = 465.10, p < 0.001.

To test whether people’s inferences were in accordance
with the predictions of pedagogical sampling, we correlated
the frequencies of examples in the grid with the probabilities
predicted by the pedagogical sampling model. For both the
positive and negative examples, we found a strong positive
correlation between the model predictions and human data,
r = 0.90 and r = 0.87, respectively.

Finally, we present representative examples of people’s in-
ferences in the learning task and maximum a posteriori model
predictions in Figure 5. The results show that inferred rect-
angles are consistent with the generating process that people
showed in the teaching task. In particular, given positive ex-
amples, learners infer rectangles for which the examples are
in opposite corners. Similarly, when given a mixed pair, peo-
ple tend to infer that the rectangle extends up to the negative
example and when given two negative examples, people infer
rectangles whose corners are just inside the examples. The
model predicts these effects for the positive and mixed cases,
while in the negative case the model does not capture peoples
inferences with the strength that people show.

Experiment 2: Random rectangle game
One possible alternative explanation for the results of the
learning task (entertained by psychologists and other cynics)
is that people simply prefer scenarios where examples lie at
the corners of the rectangles for perceptual or other reasons



Figure 5: A sample of people’s inferences in the learning task (top
row) and the MAP solution according to the model (bottom row), di-
vided by type of pair. The model clearly predicts the results for posi-
tive examples and mixed examples. For negative examples, people’s
guesses suggest that they assume negative examples mark corners,
while the pair of best results from the model does not capture this
prediction, though averaging over hypotheses closely corresponds to
peoples resposes.

not related to how the data are sampled. This experiment in-
troduces a variant of the game where the learner chooses the
examples to ask a teacher about. The teacher then labels the
examples as inside or outside the rectangle. The learner then
infers the rectangle the teacher is thinking of. Importantly, in
this version of the game, pedagogical sampling is no longer
appropriate. Because the learner does not know where the
rectangle is when they are guessing, the examples are effec-
tively random with respect to the true rectangle. Thus, we do
not expect to find the pedagogical sampling effects observed
in Experiment 1.

Method

Participants 29 University of Louisville undergraduates
participated in exchange for course credit.

Procedure The design consisted of two parts, as in Experi-
ment 1. In the first part participants were told that they were
going to see all of the possible rectangles (the same rectan-
gles that people saw in Experiment 1). They clicked (once)
anywhere on the screen to advance to the next rectangle. In
the learning task, participants played a version of the rect-
angle game in which they chose the examples that were la-
beled, then inferred the true rectangle concept. Participants
were told a number of examples and chose by clicking on the
screen. Each click was marked with a black dot. After they
made the pre-specified number of clicks, the black dots turned
into either green circles or red X’s depending on whether they
were inside or outside the unobserved rectangle. The unob-
served rectangles used to label points were the same as those
in the teaching section, in random order. Participants were
then asked to guess where the true rectangle was by clicking
and dragging with the mouse. This manipulation insured that
participants were aware that locations of examples they ob-
served were independent of the location of the true concept.
Participants were debriefed and thanked upon completion.

Figure 6: Density plots showing the relative position of the observed
examples with respect to the inferred rectangles in Experiment 2 for
positive (left) and negative (right) examples. Note that while there is
variation across the grids, in neither case is there a discernable pat-
tern of responses (cf. Figure 4). The results show that when the data
are sampled by the learner, inferences about the true rectangle do
not show the qualitative effects predicted by pedagogical sampling.

Results & Discussion
The focus of this experiment is to investigate learner’s infer-
ences when data are not pedagogically sampled. In partic-
ular, we are interested in whether the pattern of inferences
observed in Experiment 1 are specific to pedagogical situa-
tions. Therefore, we will investigate the same qualitative and
quantitative effects for the learning task as in the previous ex-
periment.

First, we investigate the relationship between the positive
and negative pairs and the inferred rectangles. For positive
pairs, the question of interest is whether, when people see a
pair of positive examples, they draw a rectangle that places
those examples in the corners. That is, do people simply have
a preference for drawing rectangles that have positive exam-
ples in the corners, or is this strategy observed in Experiment
1 due to the pedagogical nature of the examples? People’s
rectangles were divided into 3x3 grids, and we tallied the to-
tal number of examples in each bin. Figure 6, left side, shows
the distribution of positive examples. While they are not com-
pletely random, χ2(8) = 16.03, p = 0.04, they do not show
any discernable pattern. Particularly, there is no evidence that
people chose rectangles such that the examples were placed in
the corners (compare with Figure 4). The lack of correspon-
dence between the predictions of the pedagogical model and
observed data is reflected in their low correlation, r = 0.27.

For negative pairs, we are interested in whether the in-
ferred rectangles tended to have negative examples near the
edges. We categorized examples into bins based on the rela-
tive distance from the edge of the rectangle to the side of the
board, and tallied counts for each bin. Figure 6, right side,
shows the distribution of examples was not completely ran-
dom, χ2(15) = 323.43, p < 0.0001, but it does not show the
marked distance effects of the previous experiment (see Fig-
ure 4). The locations of negative examples do not correspond
with the predictions of the pedagogical model, r = 0.23. The
results show that people did not choose rectangles to be near
the negative examples – that the inferences drawn from non-
pedagogically sampled data are qualitatively different than
those based on pedagogically sampled data.

Together these results show that the predictions of the ped-
agogical model hold for data sampled by a teacher, but not for
a related task where the learner chooses which point they get
to observe. The qualitative effects predicted by the model and



observed in Experiment 1 are not the result of simple percep-
tual preferences. Rather, people are sensitive to when peda-
gogical sampling applies. People generate examples differ-
entially based on how helpful they are to a learner. Similarly,
when people receive data chosen by a teacher, people are able
to capitalize on this information to make stronger inferences.

General Discussion
Much of human learning occurs in pedagogical situations –
social situations where one person chooses information for
the purpose of helping another learn. We have presented
a formal model of pedagogical reasoning, addressing which
examples teachers should choose to communicate ideas, and
what inferences learners should make based on this purpose-
fully sampled data. We also presented two experiments test-
ing the predictions of this model in a simple experimental
setting. The first experiment showed that people’s choice of
data as a teacher, and their inferences as a learner correspond
to the qualitative and quantitative predictions of the pedagog-
ical model. The second experiment provided an important
control condition, demonstrating that when data are chosen
by the learner and hence are not representative of the concept
to be learned, the predicted pedagogical effects are not ob-
served. Together these results demonstrate a first step toward
capturing the important effects of pedagogical situations on
learning and reasoning.

Neither of the well-studied sampling assumptions (weak
or strong sampling) captures the qualitative phenomena we
have observed because neither captures the intuitions about
sampling in pedagogical situations. Both assume that data are
sampled randomly, which does not account for the preference
for certain examples. As models of learning, both are unable
to capture the speed of learning in Experiment 1 – with just
two examples, we have a strong intuition for which rectangle
the teacher has in mind – in contrast to the many examples
necessary for either of these models (Tenenbaum, 1999).

The pedagogical sampling assumption is not appropriate
in all circumstances. For many real-world learning situa-
tions, strong sampling is the right assumption; for example,
when learning about the laws that govern physical objects,
we never see situations that cannot happen and the situations
we do observe are random – certainly it is not reasonable to
assume that nature is helpfully choosing examples to teach
us something! Similarly, weak sampling applies to a va-
riety of learning situations we might encounter in casinos.
Our evidence, with that of Tenenbaum (1999) and Xu and
Tenenbaum (2007) suggests that people are able to distin-
guish situations in which different sampling assumptions are
warranted.

Though modeling pedagogical reasoning in richer domains
is a significant challenge, it highlights a great strength of our
model. We have formalized pedagogical reasoning in the ab-
stract language of probability and Bayesian reasoning, with-
out reference to the specific details of the particular setting
we considered here. As a result we are able to derive predic-

tions in principle for any domain for which we can identify an
appropriate set of hypotheses. Interesting domains to pursue
include word learning, where speakers choose words to com-
municate ideas, and causal learning, where a helpful teacher
may significantly reduce the number of interventions required
to learn latent causal structure. Different domains will have
different hypotheses and priors and as a result the model will
generate qualitatively different predictions.

One of the things that make people special is that we can
teach others what we know (Csibra, 2007). However, even
when we are teaching others, we never communicate the com-
plete idea in precise detail. As a result, people must resolve a
difficult inference problem in order to capitalize on the infor-
mation teachers provide. Gergely et al. (2007) have shown
that children do capitalize on these situations, and they argue
that pedagogical reasoning is among the powerful tools chil-
dren have for learning about the world. Much work remains
before the breadth of the implications of pedagogy for hu-
man learning are understood, but our work, providing a com-
putational basis for understanding these kinds of inferences,
represents a step in this direction.
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