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Abstract

Much of human learning occurs in social situations, and
among these, pedagogical situations may afford the most
powerful learning. In pedagogical situations, a teacher
chooses the concept that they are going to teach and the
examples that they use to teach the concept. If learners
know that a teacher is helpful and understands the im-
plications, this could support strong inferences. In pre-
vious work, Shafto and Goodman (2008) proposed and
tested a model of pedagogical data selection. We in-
tegrate special-purpose pedagogical expectations in this
framework, and derive a task that allows independent
assessment of pedagogical expectations. Two experi-
ments contrast people’s expectations about pedagogi-
cal and communicative situations. The results show
that people’s expectations differ in these situations, and
that in pedagogical situations people expect teachers to
present generalizable and semantically coherent knowl-
edge. We discuss the implications for modeling learning
in pedagogical settings, as well as for understanding hu-
man learning more broadly.
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Much of human learning occurs in social contexts. We
learn from siblings, parents, friends, and teachers by ob-
serving, imitating, and teaching. Among these social
learning settings, pedagogical situations stand out as
potentially the most important. Pedagogical situations
are situations in which one person, a teacher, chooses
information for the purpose of helping another person,
a learner, arrive at some belief. Pedagogical situations
might provide uniquely powerful learning situations, es-
pecially if learners are privy to, and understand the im-
plications of, teachers’ intentions to help.

Indeed, recent theories argue that an intuitive under-
standing of pedagogical situations may be what sets us
apart from other animals (Csibra, 2007). Under this
proposal, learners’ intuitive understanding of pedagog-
ical situations consists of two components: inferences
how teachers choose examples to teach a concept, and
expectations about what kinds of concepts teachers are
more likely to teach.

The issue of how teachers choose information and
learners’ understanding of these situations have been in-
vestigated in detail (for a review, see Csibra and Gergely,
2009). Recently, Shafto and Goodman (2008) have pro-
posed a computational model of reasoning in pedagogical
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situations. This account provides a formal explanation of
why and how teachers decide which examples to choose,
and how learners can capitalize on the teacher’s intent
to make stronger inferences.

Researchers have also argued that young children
come prepared with expectations about what kinds of
knowledge to expect in pedagogical situations. Specifi-
cally, Csibra and Gergely (2009) argue that very young
children expect that knowledge provided in pedagogi-
cal contexts is semantically generalizable. For instance,
Topal et al. (2008) show that children make A-not-B
errors in pedagogical contexts, but not in neutral con-
texts. They argue that the perseverative errors are a con-
sequence of children misinterpreting initial pedagogical
demonstrations as indicating that the A box is where the
ball belongs. While these results are quite compelling,
they contain influences of both the learner’s inference
about the teachers’ choice of data, and the learners’ ex-
pectations about what kinds of properties are likely to
be taught.

In the current paper, we investigate the hypothe-
sis that people expect semantically generalizable knowl-
edge in teaching situations. We begin by discussing the
role of prior knowledge in pedagogical reasoning, and
how this can be integrated with Shafto and Goodman’s
(2008) model of pedagogical reasoning. We then use
this framework to develop a method for separating the
role of pedagogical priors from pedagogical data selec-
tion. Two experiments use this method to investigate
whether adults expect generalizable knowledge (Experi-
ment 1) and whether adults expect semantically coher-
ent knowledge (Experiment 2). In each case, we contrast
pedagogical situations with communicative situations to
address whether these prior expectations are specific to
pedagogical contexts. We conclude by discussing impli-
cations for modeling human learning and understanding
reasoning in social situations.

The role of priors in pedagogical
reasoning

The proposal that learners expect generalizable informa-
tion can be integrated naturally into a Bayesian reason-
ing framework. From this perspective the problem of
learning is one of inferring the probability of different
hypotheses, h, given observed data, d. Bayes’ theorem
provides a way of updating our posterior beliefs about
hypotheses, P (h|d), given prior beliefs, P (h), and as-



sumptions about how data are sampled, P (d|h),

P (h|d) ∝ P (d|h)P (h). (1)

In standard Bayesian learning, it is typically assumed
that the prior, P (h), is determined by some stochastic
generative process, and data are sampled from a hypoth-
esis, P (d|h), randomly; however, these standard assump-
tions are not appropriate for pedagogical situations. In
pedagogical situations, a teacher chooses both the hy-
pothesis that they are going to teach, and the data that
they use to teach the hypothesis. It is, therefore, reason-
able for the leaner to expect that teachers’ choices are
not random, but are instead purposeful.

Recent work has formalized pedagogical sampling –
how teachers may choose data for the purpose of teaching
a hypothesis (Shafto and Goodman, 2008). This model
suggests that learners may use the knowledge that the
teacher is choosing data for the purpose of teaching them
a hypothesis, to replace the random sampling with an
assumption that the teacher will choose data that tend
to make the learner believe the correct hypothesis,

P (d|h) ∝ P (h|d). (2)

Their results show that this pedagogical sampling as-
sumption allows for stronger inferences than random
sampling. They also provided evidence that people’s in-
ferences differ in pedagogical and ostensibly random con-
texts, and the pedagogical model accurately predicted
people’s intuitive pedagogical inferences.

Here, the question is whether people have prior ex-
pectations about which kinds of hypotheses should be
taught. That is, are there a specific set of prior prob-
abilities, P (h), that apply to teaching situations. Intu-
itively, the question is whether learners expect teachers
to choose particular hypotheses that are important or
worthy of teaching. For example, more general hypothe-
ses might be expected because the knowledge is more
likely to be applicable in future situations. Formally, we
capture these expectations as a utility function which
defines how hypotheses are weighted in pedagogical situ-
ations, U(h; pedagogy). Integrating this prior into Equa-
tion 1 would allow us to capture how prior expectations,
specific to pedagogical situations, affect inferences.

Investigating pedagogical priors
In this paper, we attempt to answer two questions: (1)
what are the characteristics of people’s pedagogical prior
expectations, and (2) are these expectations specific to
pedagogical situations? To address the second question,
we need to choose appropriate (non-pedagogical) control
conditions. To address the first question, we can ask
people to make judgments about which of two teachers
they would rather have teaching them, while varying the
particular hypothesis that each is teaching. However,
given our above analysis, this requires that we separate
the contribution of pedagogical data sampling from the
contributions the pedagogical prior expectations.

Judgments about the teachers can be formalized as an
inference about whether the teacher chooses hypotheses
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Figure 1: A tree representing the intuitive taxonomic
relationships among 8 animals.

that the learner expects to be taught about. More for-
mally, we assume a parameter, θ, which specifies how
systematically a teacher chooses her examples. The
probability of choosing hypotheses depends on how sys-
tematic the teacher is,

P (h|θ) ∝ e−θU(h), (3)

where systematic teachers tend to choose hypotheses
that have higher utility (Luce, 1959).

The learner can then infer how systematic a teacher
is, given some data,

P (θ|d) ∝
∑
h

P (d|h)P (h|θ)P (θ) (4)

where P (θ) is a prior distribution specifying whether
people tend to be systematic or not. This equation states
that teachers are considered systematic to the degree
that they choose hypotheses that agree with the learner’s
prior expectations, as specified by Equation 3. However,
in this inference, the influence of P (h|θ) is not isolated.

To see how we could isolate the effects of P (h|θ), con-
sider hypotheses about properties of the the animals in
Figure 1. The set of possible hypotheses can be defined
extensionally, by enumerating all possible combinations
of animals that have or do not have the property. For ex-
ample, one hypothesis about a property is {ostrich=true,
owl=false, grasshopper=false, ant=false, iguana=false,
frog=false, leopard=false, seal=false}. Our goal is to
eliminate the contribution of the sampling assumption,
P (d|h). Assuming that we want to teach the learner
the hypothesis that all of the animals have a particular
property, how would we choose which animal or animals
to provide as examples? By presenting all of the data –
each animal labeled as having or not having the property
– we essentially choose one hypothesis. Thus, the con-
tribution of the sampling of data is to simply indicate



a particular hypothesis. Formally, the P (d|h) = 1 for
the true hypothesis, and zero for all others. Equation 4
reduces to,

P (θ|d) ∝ P (h|θ)P (θ). (5)

Given the fully labeled data, the learner’s judgments
about the teacher’s systematicity depend on whether the
learner expects that hypothesis to be chosen, and their
prior expectations about systematicity.

To isolate the influence of learners’ prior expecta-
tions about hypotheses P (h|θ), we can ask learners to
choose between two teachers. Because each teacher is
equally likely to be systematic a priori, judgments about
which of two teachers is preferred isolate the effects of
a learner’s prior expectations. Formally, the judgment
becomes a ratio of two inferences, each individually spec-
ified by Equation 5,

P (θ1|d1)
P (θ2|d2)

∝ P (h1|θ)P (θ)
P (h2|θ)P (θ)

=
P (h1|θ)
P (h2|θ)

. (6)

In the following, we present two experiments in which
people make judgments about which of two teachers they
want to have teaching them in the future (presumably
the one that chooses a hypothesis that is more consistent
with their expectations). In our investigations, we have
two goals: (1) identifying the prior expectations that
people bring to pedagogical situations, and (2) establish-
ing whether these expectations are unique to pedagogi-
cal situations. The experiments test two claims related
to prior expectations about pedagogical situations: that
learners expect more generalizable information, and that
learners expect semantically coherent information.

Experiment 1: Testing the bias toward
generalizability

Experiment 1 investigated whether people have an ex-
pectation that teachers would teach generalizable infor-
mation. To investigate this question, we choose a do-
main for which we have a good understanding of the
possible hypotheses, the domain of animals. Figure 1
shows the animals, and the intuitive taxonomic relations
among these animals.2 We operationalize generalizable
concepts here as a concept that is true of a broader class
of animals.

To investigate whether people expected generalizable
knowledge, we presented participants with scenarios in
which pairs of teachers taught concepts of different levels
of generality. The generalizable teacher taught a prop-
erty that was consistent with the tree structure and was
true of a greater number of exemplars. For instance, the
generalizable teacher might teach a property that was
true of all 8 animals, while the less generalizable teacher
might teach a property that was true of only ostriches
and none of the other animals. If people expect teach-
ers to teach generalizable information, we expect to find
that people choose the teacher who teaches properties
that were true of broader sets of examples.

2The tree was derived using the tree learning algorithm
and a subset of the animals used in Kemp and Tenenbaum
(2008).

Methods:
Participants: Twenty-four university undergraduates
participated in this experiment in exchange for course
credit. Participants were randomly assigned to the ped-
agogical or the communication scenarios.

Procedure: In the pedagogical situation, people were
presented with a series of questions asking them to de-
cide which of two teachers they would like to learn from
in the future. Each teacher was presented as teaching
about a novel enzyme, e.g. “Teacher 1 is teaching about
enzyme P23T.” The names of the enyzmes were random
combinations of letters and numbers. This was followed
by lists indicating which of the eight animals had the
enzyme and which did not. Each question contrasted
two teachers, where teachers differed in the generality of
the properties taught. For instance, one teacher might
teach a property that was true of owls, ostriches, leop-
ards, and seals, but not of grasshoppers, ants, iguanas,
and frogs, while the other was teaching a property that
was true of all eight animals. Paired teachers always
taught concepts where one was a subset of the other, so
the more generalizable concept included all of the pos-
itive examples of the property in the less generalizable
concept, with additional positive examples (e.g. ostrich
versus ostrich and owl). Participants indicated which
teacher they would rather have teaching them about new
enzymes using a Likert scale ranging from −10 to 10,
where the extremes indicated the teacher on the left or
the right and zero indicated indifference. Participants
rated all possible pairings of teachers, resulting in a to-
tal of 34 questions. Order of the questions, as well as
the side (right or left) of the more general concept, were
randomized.

The communication condition was identical to the
pedagogical condition, with the exception of some of the
wording. Instead of teaching about enzymes, the situa-
tions described people who were talking about enzymes.
For example, “Person 1 is talking about enzyme P23T.”
Additionally, participants were asked to provide ratings
about which one they would rather talk to in the fu-
ture. Otherwise, the questions and response sheets were
identical.

Results & Discussion
We coded people’s judgments as positive if they were in
the direction of the more generalizable teacher and neg-
ative if they were in the direction of the teacher with the
less general property. To test whether people expected
more general properties, we compared the average rat-
ings to chance (zero). In the pedagogical condition, peo-
ple chose the teacher with the more general information,
mean = 0.66, t(407) = 2.06, p < 0.05. In contrast, in the
communication condition, people choose the less general
information, mean = −0.56, t(407) = −2.09, p < 0.05.
The difference between the two conditions was signifi-
cant, t(814) = 2.84, p < 0.01. These results suggest that
people expect that more general properties will be taught
in pedagogical situations, in contrast with communica-
tive settings, where people expect less general properties.

To follow up on these results, we investigated the pat-
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Figure 2: Experiment 1 results: (a) Average human ratings in the pedagogy and communication conditions. Positive
ratings indicate the more generalizable teacher. (b) Scatterplot showing the relationship between the difference in
generalizability for pairs of teachers (x axis) and people’s ratings (y axis) for the pedagogy condition. The strength
of people’s ratings increases with an increasing difference in generalizability, r = 0.51, indicating that they expect
more generalizable concepts in pedagogical settings. (c) Scatterplot showing the relationship between difference in
generalizability and people’s ratings for the communication condition. The strength of ratings decreases with an
increasing generalizability, r = −0.66, indicating that people expect less generalizable concepts in communicative
settings.

tern of ratings for individual items. If people choose
more generalizable concepts, then pairs for which there
was the greatest gap between the more and less generaliz-
able teacher should have the strongest ratings. To inves-
tigate this question, we needed to quantify how general
each hypothesis was. We consider two possible measures
of generality: the number of positive examples, and the
sum of the distances among items in the tree. To test
whether ratings indicated an expectation that proper-
ties would be generalizable, we collapsed individual judg-
ments into a single average rating for each question, re-
sulting in 34 ratings. To investigate which measure of
generality best predicted people’s judgments, we con-
ducted a stepwise regression with item averages as the
dependent variable. The independent variables included
the number of positive examples in more general concept,
the number of positive examples in the less general con-
cept, the difference in number of positive examples, as
well as the summed distances for the more and less gen-
eral concepts, and the difference in the summed distance.
The two difference scores allowed us to test whether peo-
ple’s judgments take into account both teachers, or just
a single teacher when making their judgments. Step-
wise regression greedily selects the variable that accounts
for the greatest variance, and iterates until no variables
account for significant variance. Analysis of the ped-
agogy condition showed that the difference in summed
distances accounted for the greatest variance, r = 0.51,
F (1, 32) = 11.49, p < 0.01, and that no other variables
accounted for significant residual variance. The correla-
tion indicates that the bigger the difference in general-
izability was, the stronger people’s ratings were toward
the more generalizable teacher. In contrast, regression
analyses on the communication condition showed that
while the difference in summed distance was a signifi-
cant predictor of ratings, the relationship was negative,
r = −0.66, F (1, 32) = 24.52, p < 0.001. This suggests

that in communicative settings, people’s expectations
about generalizability are the opposite of their expec-
tations in pedagogical settings.

The number of positive examples, while a straightfor-
ward measure of generality for this task, is undesirable
for two reasons. First, if this leads to an accurate char-
acterization of people’s inferences, then one might won-
der to what degree the results are a consequence of task
demands (given that people were answering questions
about lists of animals). Second, the number of positive
examples is not a very good measure of generality be-
cause it bears no necessary relationship with actual se-
mantic generalizability. As can be seen in Figure 1, many
possible sets with the same number of positive examples
differ markedly in their coverage of the tree. Instead,
we prefer to measure the generalizability of a concept in
terms of the sum of distances between all pairs of positive
examples. This provides a measure that is not subject to
task demands, and is related to the semantic generality
of the concept. Our analyses show that distance in the
tree provides a better description of people’s behavior,
providing evidence that people’s judgments do not sim-
ply reduce to task demands, and that their judgments
are based on semantic generalizability.

It appears that people have strong prior expectations
that they bring specifically to pedagogical situations. In
pedagogical situations, learners expect that teachers will
choose to teach generalizable information. In contrast,
when in communicative situations, people expect that
speakers are likely to talk about specific information.
Our analyses showed that people’s judgments are better
predicted by distance in a semantic tree, consistent with
a bias toward semantically generalizable information.



Experiment 2: Testing the bias toward
semantic coherence

Experiment 2 investigated whether people have an ex-
pectation that teachers will choose semantically coher-
ent concepts. To investigate this, we presented partici-
pants with scenarios in which two teachers each taught
concepts with two positive exemplars. The semanti-
cally coherent teacher taught a property that was true
of two tree-consistent exemplars, such as owl and os-
trich. They were contrasted with a semantically incoher-
ent teacher who taught a property that was true of two
tree-inconsistent exemplars, such as ostrich and leopard.
If people expect teachers to teach semantically coher-
ent concepts, we expect to find that people choose the
teacher who teaches tree-consistent properties.

Methods:
Participants: Twenty university undergraduates par-
ticipated in this experiment in exchange for course
credit.

Procedure: The procedure was identical to that used
in Experiment 1 with the exception of the questions used.
Each scenario provided information taught by two teach-
ers. All properties were true of two animals, but were
absent in the other six. In each scenario, one teacher
taught a property that was semantically coherent – it
was consistent with the structure of the tree – and the
other taught a property that was semantically incoher-
ent – it was inconsistent with the structure of the tree.
For instance, a semantically coherent property might be
true of owls and ostriches, but no other animals. Con-
trarily, a semantically incoherent property might be true
of owls and leopards but no other animals. Questions
were designed such that semantically coherent pairs were
contrasted with all minimally different semantically in-
coherent pairs that overlapped one animal. For example,
owls and ostriches were contrasted with owls and leop-
ards, owls and seals, ostrich and leopards, and ostrich
and seals. This resulted in a total of 16 questions. Order
of the questions, as well as the side of the semantically
coherent pair (left or right), were randomized.

Results & Discussion
Do people expect teachers to teach semantically coherent
concepts? To address this question, we coded people’s
ratings as positive numbers if they were in the direc-
tion of the semantically coherent teacher, and negative
numbers if they were not. We then ran separate t-tests
comparing the means in the pedagogical and commu-
nicative conditions to zero. In the pedagogical condi-
tion, people tended to choose teachers of semantically
coherent concepts, mean = 0.97, t(159) = 2.04, p < 0.05,
one-tailed. In the communication condition, people
also chose teachers of semantically coherent concepts,
mean = 2.21, t(159) = 6.76, p < 0.001. The differ-
ence between the two conditions was also significant,
t(308) = 2.16, p < 0.05.

To further investigate the role of semantic coherence,
we computed the distance between all of the positive

examples in each scenario (see Figure 1). If people ex-
pect semantically coherent concepts, then more seman-
tically coherent pairs – those with shorter distances –
should have the strongest ratings. We ran a stepwise re-
gression with people’s ratings as the dependent variable,
and independent variables including distance between
the positive examples in the more and less coherent sets,
and the difference in the distances. For the pedagog-
ical condition, the distance between positive examples
in the coherent concept was the only predictor selected,
r = −0.70, F (1, 14) = 13.24, p < 0.01. Of the coher-
ent hypotheses, the teachers teaching the more coherent
concepts were rated more strongly. For the communica-
tion condition, regression analyses showed that distance
between positive examples of coherent pairs did not
strongly predict people’s ratings, r = 0.23, F (1, 14) =
0.80, p > 0.3. 3

Interestingly, unlike in Experiment 1, people’s judg-
ments in Experiment 2 were best predicted by the coher-
ence of the more coherent hypothesis alone (as opposed
to the difference in coherence). This suggests that the
semantically incoherent hypotheses did not play a large
role in people’s judgments. This may reflect an explicit
judgment that these cases are so unexpected that they,
in effect, have zero weight.

The evidence suggests that people expect teachers to
teach semantically coherent concepts: overall, people
chose teachers of more semantically coherent concepts,
and the strength of people’s ratings decreased as the
strength of coherence decreased. The evidence also sug-
gests that people’s expectation of coherence may apply
across more than just pedagogical situations. Results
from the communication condition showed that people
tended to choose the more coherent speaker, but the
strength of their ratings was not related to the degree
of coherence. These results suggest that people’s ex-
pectation of semantic coherence may not be limited to
pedagogical situations.

Discussion
Pedagogical situations play a central role in human
learning. In pedagogical situations, teachers choose
which concepts to teach and which examples to use to
teach the concept. We have presented an extension of
Shafto and Goodman’s (2008) model of pedagogical data
selection that incorporates specific expectations about
pedagogical situations. Using this framework, we have
derived a method for isolating the effects of prior ex-
pectations about pedagogical situations. The results of
Experiment 1 showed that people expect teachers to pro-
vide generalizable knowledge, and that this expectation
does not apply in more general communicative settings.
The results of Experiment 2 showed that people expect
teachers to provide semantically coherent information,
although this appears not to be specific to pedagogical
situations. Taken together, these results provide evi-
dence that people have specific expectations—intuitive

3A separate stepwise regression showed that none of the
independent variables accounted for significant variance in
people’s judgments.
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Figure 3: Experiment 2 results: (a) Average human ratings in the Pedagogy and Communication conditions. Positive
ratings indicate the more semantically coherent teacher. (b) Scatterplot showing the relationship between distance
among positive examples of coherent hypotheses (x axis) and people’s ratings (y axis) in the pedagogy condition.
People’s ratings increase with decreasing distance, r = −0.70, suggesting that people expect coherent hypotheses in
pedagogical settings. (c) Scatterplot showing the relationship between distance among positive examples of coherent
hypotheses (x axis) and people’s ratings (y axis) in the communication condition. People’s ratings are only weakly
related to distance, r = 0.23.

theories of pedagogical situations.
Our results provide additional evidence in support

of Csibra and Gergely’s (2009) claim that people ex-
pect generalizable information in pedagogical contexts.
Where previous results focused on young children, our
results suggest that this expectation continues into
adulthood. Our results also provide evidence that se-
mantic coherence, while expected in pedagogical situa-
tions, is not specific to these contexts. Rather, the ex-
pectation of semantically coherent concepts extends to
communicative, as well as pedagogical situations.

Here we have focused on learners’ expectations, but
for these pedagogical expectations to be reasonable, it is
important that teachers meet their expectations. Specif-
ically, do people choose to teach concepts that are more
generalizable and more coherent? If so, what are the
implications of these matching (or mismatching expec-
tations) in terms of the kinds of concepts that can be
learned, the speed at which they are acquired, and the
robustness of knowledge transmission? Future research
will aim to answer these questions.

Our experiments have provided information about
people’s prior expectations in pedagogical situations, but
it is also important to explain why people have these bi-
ases. There is work to be done in formalizing computa-
tional models that explain why certain hypotheses would
be more or less likely to be taught. This may not turn
out to be entirely straightforward because while there is
a reasonable motivation for teaching generalizable con-
cepts, there are also motivations for teaching other kinds
of concepts. For instance, one might also want to teach
sparse concepts because they may be difficult to discover
on one’s own. Further empirical research may help nar-
row down the possibilities and provide guidance for more
explanatory models.

More generally, previous approaches to modeling hu-
man learning have focused on a single unitary set of
prior expectations that apply generically across situa-

tions (but see Shafto et al., 2006). However, this ap-
proach seems obviously too simple. We all intuitively
understand that we have different expectations that ap-
ply when, for example, we talk to children as opposed
to adults. Pedagogical situations are but one case of a
more general problem. Understanding how social situa-
tions affect learning will require understanding how dif-
ferent contexts affect both learners’ prior expectations
and learners’ assumptions about how information is se-
lected.
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