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Glossary
Belief transport: applies the idea of optimal trans-
port to cooperative communication by viewing beliefs
as a resource to bemoved to observable data, where
the costs are given by a probabilistic model.
Naïve utility calculus: a computational theory in
cognitive development that describes commonsense
psychological reasoning [5].
Optimal transport: a mathematical theory that
describes optimal plans for moving resources from
one configuration to another, given the cost of the
moves.
Pedagogic-pragmatic value alignment: a com-
putational theory in robotics for ensuring that robots’
objectives match those of their human users [3].
Rational speech act: a computational theory in
linguistic pragmatics describing how speakers and
listeners choose words and interpret their referents [1].
Sinkhorn scaling: an algorithm for computing solu-
tions to optimal transportation problems, which is
equivalent to cooperative theory of mind reasoning.
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Recent research formalizes cooper-
ative communication as belief trans-
port using the mathematical theory
of optimal transport. This formaliza-
tion allows rigorous a priori analysis
of the statistical and ecological
properties of models of coopera-
tive communication, unification of
prior models and analysis of their
differences, and promising direc-
tions for future research.
Cooperative communication
Cooperative communication is mutual the-
ory of mind reasoning between a pair of
agents, one who selects data to convey a
hypothesis and a second who infers
a hypothesis given data, in which both
agents have the shared goal of success-
fully transmitting beliefs (Figure 1). Cooper-
ative communication plays a central role in
theories of cognition, culture, and human–
machine interaction. For cognition, coopera-
tive communication is central to theories of
effectiveness of language and the efficiency
of learning [1,2]. For culture, cooperative
communication is invoked to explain accu-
mulation of knowledge over generations
[2]. For human–machine interaction, coop-
erative communication represents the fron-
tier by which humans and machines may
work together more seamlessly toward so-
cietal goals [3]. Although central, whether
cooperative communication can live up to
these promises remains unanswered.

Answering theoretical questions about the
implications of cooperative communication
requires making statements that hold over
the many possible contexts in which
cooperative communication takes place.
Computational models of cooperative com-
munication, however, are developed and
tested within specific experimental para-
digms. For example, experimenters choose
which and how many objects there are and
the possible words (or actions) onemay use
to communicate, choices that tend toward
small numbers of simple objects, referred
to by a single word about which there
can be little confusion or disagreement.
For instance, one classic study asked
participants whether they would use the
word blue or circle to pick out a blue circle
from an array including a blue square
and a green square [1]. These models
are tied to specific methodological
choices related to which and how many
objects and words, the distinctiveness
of their perceptual features, and the shared
understanding of these choices between
participants. As a result, such models are
ill-suited to making general statements,
which would require simulating possibilities
over a prohibitively large space of possibili-
ties. Thus, there are fundamental limitations
to the conclusions that one can draw, re-
garding whether cooperative communica-
tion is effective for transmitting information,
efficient for learning, can explain knowledge
accumulation or support human–machine
cooperation, from current models. In this
paper, we present an informal introduction
to belief transport (see Glossary), a re-
cently proposed mathematical theory that
addresses these challenges, discuss recent
advances enabled by the theory, and
broader implications.

Belief transport
Optimal transport is a field within mathe-
matics concerned with finding transport
plans for moving resources. Suppose you
are a delivery company owner who has
trucks that pick up bread from bakeries
and deliver it to cafes. Bob’s bakery has
ten loaves and Bonnie’s bakery has five
and you need to deliver ten to Cara’s cafe
and five to Carl’s. If the cost of transporting
Tr
between the bakeries and cafes is equiva-
lent, then it is clear that you could simply de-
liver Bob’s ten loaves to Cara, and Bonnie’s
five loaves to Carl. However, if instead Cara
and Carl need seven and eight loaves, re-
spectively, and the cost of delivery between
the bakeries and cafes differs, finding the
best plan for moving loaves from bakeries
to cafes becomes complicated. Optimal
solutions to resource allocation problems
such as this are the subject of the mathe-
matical theory of optimal transport.

Recent research [4] has shown how this
framework can be used to understand
transport of beliefs via data (Box 1) by
proving equivalence between cooperative
communication and optimal transporta-
tion plans [4]. Using this formulation, past
cognitive models of cooperative commu-
nication [1,3,5,6] are approximate solu-
tions to the problem of belief transport
[4]. Indeed, belief transport can be ex-
tended to analyze sequential interactions
[7] such as are typical in human conversa-
tion and in cultural transmission. The re-
sults have implications for understanding
statistical and ecological validity of models
of human cooperative communication,
unifying and comparing models, and
suggest new research directions.
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Figure 1. Schematic depiction of belief transport. Belief transport computes an optimal plan for
transmitting beliefs via data. (A) Belief transport plans can be computed using Sinkhorn scaling, which finds
the optimal plan by alternating between adjusting rows and columns to meet the desired distributions (see
Box 1 for further details). (B) The optimal plan satisfies the desired distributions on data and hypotheses, and
is closest subject to the choice of λ. (C) Belief transport is a mathematical formalization of cooperative
communication as a social inference, encompassing prior models of communication. One agent (right)
reasons about which data to select to induce the intended hypothesis in the second agent (left). The second
agent reasons about which hypothesis would be best induced by which data in order to infer the intended
hypothesis. Communication is successful when the second agent correctly infers the intended belief.
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Consistency of inference and robustness
to violations of common ground
A statistical model is said to be consistent
when, for every hypothesis, the model
converges to the target hypothesis as
more and more data are sampled from it.
Intuitively, consistency means that given
enough data the model does not confuse
one hypothesis for another. The cultural
ratchet hypothesis suggests that people
Box 1. Formalization of belief transport

Belief transport seeks the optimal plan, P(λ), for transm
that minimize the cost of transportation, C, and depen
H(P). U(d, h) represents the set of valid plans, which co

P λð Þ ¼ arg min
P ∈ U d;hð Þ

C;Ph i− 1
λ
H Pð Þ

� �
;

where 〈C,P〉 is the sum of the elementwise product, λ
regularization, and H( ⋅ ) is entropy. For communication
model. For the teacher, Ci, j

T = − log PL(hj∣di) − log PT

Sinkhorn scaling [8] is a method of computing optimal
malization of the initial matrixP0 = e−λC to arrive at the solut
between probabilistic agents [10] for λ = 1 and closely rela
[5], machine teaching [6], and pedagogic-pragmatic v
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accumulate knowledge over generations
by cooperatively communicating.Minimally,
this requires that, over generations, learners
would accumulate knowledge and even-
tually converge to the truth, given one
had a teacher with knowledge and per-
fect transmission of knowledge between
successive learners. This minimal analy-
sis of cultural accumulation of knowledge
is precisely a question about consistency.
itting beliefs, h, via data, d. Optimal plans are those
ding on the parameter λ, uncertainty about the plan,
uple h and d. Formally,

ðIÞ

is a parameter that controls the strength of entropy
, a natural way of setting the cost is via a generative
(di), and symmetrically for the learner.

plans [9], which involves iterative row and column nor-
ionP(λ) [9]. Sinkhorn scaling is equivalent to cooperation
ted to rational speech act [1], naïve utility calculus
alue alignment [3] (see [4] for derivation).
Belief transport is provably consistent [7]
and therefore cooperative communication
can theoretically explain how people com-
municate successfully and accumulate
knowledge over ontogeny and phylogeny.

Common ground is the assumption that the
communicating agents know the other’s
beliefs and share an understanding of how
data are related to hypotheses. Intuitively,
it is clear that in ecologically valid settings
common ground can never be exactly met;
one can never know another’s mind exactly.
Prior models of cooperative communication
assume common ground because there are
infinite ways by which it may be violated.
Yet, for this same reason, prior models are
ill-suited for ensuring that predictions are
robust to violations of common ground;
this would require instantiating and testing
the myriad possibilities. Belief transport is
provably robust to violations of common
ground and has analyzed ways in which ap-
proximate models introduce vulnerabilities
using mathematical properties of Sinkhorn
scaling [4]. Thus, belief transport provides a
mathematical understanding of when and
why cooperative communication can ensure
reliable belief transport in ecologically valid
settings.

Unification and comparison of models
Recursive theory of mind reasoning is a
common thread across models of coopera-
tive communication. Models differ along two
primary directions: the number of steps
of theory of mind recursion they propose,
and the degree to which data selection
by the communicating agent minimizes
uncertainty. Belief transport unifies these
approaches and allows detailed, general
comparison of their implications.

Sinkhorn scaling is an algorithm that solves
for optimal belief transport plans alternating
between making the rows add to the de-
sired total and making the columns sum
to the desired total by dividing by the
respective sum. Sinkhorn scaling is provably
equivalent [4] to the model of intuitive
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pedagogical reasoning [10]. Further, ratio-
nal speech act theory [1], a model that
uses one or a few steps of recursive rea-
soning to explain pragmatic inferences
by speakers and listeners, approximates
belief transport in a precise statistical
sense and pedagogic-pragmatic inference,
which proposes robots that select data
that maximize the probability of the desired
hypothesis [3], approximates unregularized
belief transport when uncertainty is mini-
mized (i.e., λ is large) [4]. Indeed, models
across literatures [5,6,11] can be viewed
as approximations of belief transport, open-
ing up the possibility of systematically com-
paring theories in a single framework to
better understand their relative predictions.

Indeed, one can investigate whether, how,
and to what degree existing models differ
in their predictions [4]. Increasing the num-
ber of recursive steps has modest effects
on increasing the effectiveness of commu-
nication in the presence of perfect com-
mon ground; however, with violations of
common ground, increasing the number
of recursive steps yields greater effective-
ness. They also find that more greedy
selection of data, as represented by large
values of the λ parameter, yields qualitative
decreases in robustness to violations of
common ground. Specifically, λ=1, which
represents a form of probability matching,
is ideal in some sense: values below 1 lose
information and values above 1 introduce
sensitivity to violations of common ground.
The mathematical tools provided by belief
transport allow unification and comparison
of models, including never before pro-
posed approaches.

New directions and implications
There are many algorithms for obtaining be-
lief transport plans. We previously noted
that the Sinkhorn scaling algorithm is
equivalent to using theory ofmind recursions
in cooperative communication. Another al-
gorithm for obtaining belief transport plans
is based on gradient descent. Thus, at the
algorithmic level, belief transport highlights
potential connections between probabilistic
models and neural networks and indicates
exciting theoretical possibilities and alterna-
tive testable models of approximate infer-
ence.

Beyond basic research, cooperative
communication between humans and
machines is increasingly important in
society. Explainable artificial intelligence
(AI) is one such example, in which the
goal is to explain inferences of AI to a
human user. This is challenging because
the most high-performing classifiers, deep
neural networks, are opaque even to AI
experts, which limits applicability to high
stakes domains where ethical and legal
considerations require auditability. Explain-
able AI can be formalized as approximation
of cooperative communication, in which
the goal is for the AI to explain itself to the
human by selecting important or influential
data [12]. By connecting explainable AI to
models of cooperative communication in
cognitive science, they also open the door
to theoretical analysis of which AIs are likely
to be more or less explainable, and why,
through the lens of belief transport. In this
and other practical domains, theoretical
guarantees are an important tool for en-
suring that whatever methods we use to
explain AI are robust.

Concluding remarks
Advances in science occur when new tools
shed light on classic questions. Cooperative
communication is foundational acrossmany
domains of cognition and is increasingly im-
portant in society, yet we have lacked tools
to systematically analyze theoretical claims
and guarantee robust performance. By
unifying existing proposals, belief transport
Tr
enables the systematic comparison of
strengths and limitations, sheds light on
connections across theories, and suggests
paths toward empirical and theoretical prog-
ress in understanding cooperative commu-
nication and its role in cognition, language,
and culture, and practical progress in
designing and implementing AI that are ef-
fective partners in solving important societal
problems.
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