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Spatial summation of luminance contrast signals has
historically been psychophysically measured with stimuli
isolated in spatial frequency (i.e., narrowband). Here, we
revisit the study of spatial summation with noise patterns
that contain the naturalistic 1/fa distribution of contrast
across spatial frequency. We measured amplitude
spectrum slope (a) discrimination thresholds and verified
if sensitivity to a improved according to stimulus size.
Discrimination thresholds did decreasewith an increase in
stimulus size.These dataweremodeledwith a summation
model originally designed for narrowband stimuli (i.e.,
single detecting channel; Baker & Meese, 2011; Meese &
Baker, 2011) that we modified to include summation
across multiple—differently tuned—spatial frequency
channels.To fit our data, contrast gain control weights had
to be inversely related to spatial frequency (1/f); thus low
spatial frequencies received significantly more divisive
inhibition than higher spatial frequencies, which is a
similar finding to previous models of broadband contrast
perception (Haun & Essock, 2010; Haun & Peli, 2013). We
found summation across spatial frequency channels to
occur prior to summation across space, channel
summation was near linear and summation across space
was nonlinear. Our analysis demonstrates that classical
psychophysicalmodels can be adapted to computationally
define visual mechanisms under broadband visual input,
with the adapted models offering novel insight on the
integration of signals across channels and space.

Introduction

Spatial summation of luminance contrast signals
describes an increase in sensitivity to a stimulus given

an increase in its area, and occurs for stimuli presented
at and above contrast threshold levels (Baker & Meese,
2011; Campbell & Green, 1965; Graham, 1977;
Graham & Robson, 1987; Graham, Robson, &
Nachmias, 1978; Graham & Sutter, 1998; Kersten,
1984; Landy & Oruç, 2002; Legge, 1984; Meese, 2004;
Meese & Baker, 2011; Meese, Hess, & Williams, 2005;
Meese & Summers, 2007; Robson & Graham, 1981;
Summers, Baker, & Meese, 2015). Computationally,
spatial summation is described as a multistage process
that begins with spatial filtering (i.e., a filter narrowly
tuned for spatial frequency and orientation), followed
by nonlinear transduction, linear summation and
probably summation, where each stage operates over a
progressively larger area of the retina (Baker & Meese,
2011; Foley, Varadharajan, Koh, & Farias, 2007;
Meese, 2004; Meese & Baker, 2011; Meese & Summers,
2007; Wilson & Gelb, 1984). This structure of
summation is an excellent foundation that accounts for
psychophysical and neurophysiological summation
effects across eye and space for phase congruent and
incongruent stimuli—excluding modality specific terms
like interocular suppression for binocular combination
and phase selective channels (Baker & Meese, 2011;
Cunningham, Baker, & Peirce, 2017; Georgeson,
Wallis, Meese, & Baker, 2016; Meese, 2004; Meese &
Baker, 2011; Meese, Georgeson, & Baker, 2006;
Richard, Chadnova, & Baker, 2018). Summation
models (including recent implementations; Baker &
Meese, 2011, Meese & Baker, 2011) have been
developed explicitly with narrowband stimuli (i.e.,
sinusoidal gratings), and thus can only describe the
response of a single detecting channel to a stimulus.
Yet, the retinal image formed by real-world environ-
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ments is broadband: it contains contrast across a broad
range of spatial frequencies and orientations. This
means that multiple channels with different tuning are
simultaneously active, and their outputs weighted by
the interdependent responses of similarly and dissimi-
larly tuned channels (Cass, Stuit, Bex, & Alais, 2009;
Schwartz & Simoncelli, 2001). To understand how
these channels operate (e.g., spatially sum) in natural-
istic environments, it is important to measure psycho-
physical effects with stimuli that better represent the
typical input received by the visual system (i.e.,
broadband images). This, in turn, can guide how
psychophysical models of vision may be adjusted to
describe how vision operates in the real world (Bex,
Mareschal, & Dakin, 2007; Hansen et al., 2015; Hansen
& Hess, 2012; Haun & Peli, 2013; Legge & Foley, 1980;
Meese & Holmes, 2010; Petrov, Carandini, & McKee,
2005; Schwartz & Simoncelli, 2001).

Increasing the complexity of a stimulus from a
narrowband image, which contains a single spatial
frequency and orientation, to images that contain more
than one spatial frequency or orientation (i.e., broad-
band images) has a measurable impact on perception.
This has been demonstrated psychophysically with
studies on cross-orientation suppression (Meese &
Holmes, 2007, 2010; Roeber, Wong, & Freeman, 2008),
the horizontal effect (Essock, Haun, & Kim, 2009;
Hansen, Essock, Zheng, & DeFord, 2003; Hansen et
al., 2015), broadband masking (Hansen & Hess, 2012),
amplitude spectrum slope discrimination (Hansen &
Hess, 2006; Johnson, Richard, Hansen, & Ellemberg,
2011; Knill, Field, & Kersten, 1990), and perceived
contrast in natural images (Haun & Peli, 2013).
Importantly, those studies have repeatedly demon-
strated that stimuli containing contrast across a broad
range of spatial frequencies and orientations can
produce interactive processes that alter observer
sensitivity to spatial frequency and/or orientation. The
few that explored broadband contrast perception
computationally demonstrated that a classical contrast
gain control transducer with an additional divisive term
for the activation of differently tuned channels is
sufficient to capture observer responses to naturalistic
stimuli. Indeed, this computational approach was
successfully implemented to describe observer re-
sponses for traditional psychophysical tasks of visual
masking (Alam, Vilankar, Field, & Chandler, 2014;
Hansen et al., 2015), perceived contrast (Haun & Peli,
2013), and binocular summation (Huang & Dai, 2018).
These studies, which implement traditional psycho-
physical paradigms with naturalistic stimuli, have made
important contributions to the development of a model
of broadband contrast perception. However, there
remain fundamental features of visual processing to
explore with broadband stimuli. Here, we investigate
how the responses of differently tuned spatial frequency

channels may sum together over space, and whether
their summation leads to any improvement in observer
sensitivity. That is, we investigate whether sensitivity to
broadband stimuli is subject to spatial summation
effects.

An increase in area of a broadband stimulus alters a
stimulus in a manner that differs from an increase in
area of a sinusoidal grating. While increasing the area
of a sinusoidal grating will only increase the number of
cycles displayed, making the stimulus increasingly
narrowband, an increase in size of a broadband
stimulus will add low spatial frequencies to the image.1

For natural scenes, contrast is unevenly represented
across spatial frequency: the Fourier amplitude spec-
trum of natural images falls inversely with spatial
frequency, defined as

amplitude}
1

fa
ð1Þ

where f is spatial frequency and the exponent (a) defines
the rate of descent in amplitude. On average, the value
of a approximates 1.0, but ranges between 0.6 and 1.6
across wide sets of natural scenes (Billock, 2000;
Burton & Moorhead, 1987; Hansen & Essock, 2005;
Tolhurst, Tadmor, & Chao, 1992; van der Schaaf &
van Hateren, 1996). This means that natural images
possess more contrast at low spatial frequencies than
high, with the relative difference in contrast indexed by
a. As images with steeper a have a larger representation
of low spatial frequency contrast, an increase in
stimulus size (thus adding low spatial frequencies to the
image), may exert a larger influence on discrimination
thresholds than images with shallower a. It is unclear
how this additional low spatial frequency content may
influence observer perception, as masking studies that
use naturalistic masks have demonstrated that percepts
based on low spatial frequencies are disproportionally
suppressed compared to high spatial frequencies (Bex,
Solomon, & Dakin, 2009; Haun & Essock, 2010;
Webster & Miyahara, 1997). The added low spatial
frequency content from an increase in stimulus size may
therefore have little influence on sensitivity to broad-
band stimuli. As it is unclear how the a of an image
may modulate spatial summation (if at all), broadband
spatial summation should be measured with images
that range in a in order to adequately capture the
summation process potentially completed by the visual
system under naturalistic scenarios.

There is, additionally, a question in regard to how to
best measure spatial summation with broadband
stimuli. Spatial summation is typically defined as a
decrease in contrast detection or discrimination
thresholds, measurements that are challenging to make
with broadband stimuli. We can, however, measure
sensitivity to the distribution of broadband contrast
across spatial frequency with an amplitude spectrum
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slope (a) discrimination task (Field, 1987; Hansen &
Hess, 2006; Johnson et al., 2011; Tolhurst & Tadmor,
1997). In this task, observers are asked to discriminate
between images (e.g., noise or natural scenes) that differ
in a, which can serve as a proxy of broadband contrast
sensitivity. Discriminability is known to depend on the
reference a: discrimination thresholds are generally
lowest when the reference stimulus has an a near the
typical values of natural scene images (e.g., between 1.0
–1.3; Ellemberg, Hansen, & Johnson, 2012; Field, 1987;
Hansen & Hess, 2006; Johnson et al., 2011; Knill et al.,
1990). These studies were conducted with small (18–28)
stimuli presented at fovea or parafovea. Whether
tuning to a persists for larger stimulus sizes is uncertain
as the only other study that measured a discrimination
thresholds with large stimuli (;108) found no indica-
tion the typical peak in sensitivity for as near 1.0–1.3
(Thomson & Foster, 1997). Amplitude spectrum slope
discrimination thresholds were measured with images
of natural scenes and in their dataset, sensitivity to a
was actually worse when the reference image a was
closest to its original value, which indicates that tuning
to a may be altered by the size of the stimulus.

Motivated by the above, we first verify whether
sensitivity to broadband stimuli that vary in a improves
as a function of stimulus size. Second, we use these data
to build a model of broadband spatial summation in a
similar fashion to previous computational descriptions
of broadband contrast perception. We measure a
discrimination thresholds for five different reference a
values to stimuli of increasing size. We find that
discrimination thresholds decreased monotonically as a
function of stimulus area, and interestingly, this
decrease was not modulated by the reference a. This
means that the increase in stimulus size did not alter
tuning to a: thresholds remained lowest for a values
between 1.0–1.3. To explain these findings, we develop
a computational framework that adapts a narrowband
spatial summation model (Baker & Meese, 2011; Foley
et al., 2007; Meese & Baker, 2011; Meese & Summers,
2007) to generate responses for broadband and
naturalistic stimuli. Specifically, we explore how
modifications to the summation of the responses over
multiple spatial frequency channels and the linearity of
summation affect the ability of a spatial summation
model to fit the broadband spatial summation results
obtained here.

Methods

Participants

Seven volunteers (five women, two men) between the
ages of 19 and 23 (median age¼ 21 years) participated

in the experiment. All were experienced psychophysics
observers with normal or corrected-to-normal visual
acuity. Informed consent was obtained from all
participants, and all were treated in accordance the Tri-
Council Policy Statement: Ethical Conduct for Re-
search Involving Humans, and approved by Concordia
University Human Research Ethics Committee (Cer-
tificate: 10000119).

Apparatus

Stimuli were presented on a 22.5 in. ViewSonic
(G225fB) monitor driven by an Apple Mac Pro (2 3
2.66 GHz processor) equipped with 8 GB of RAM and
a 1 GB PCIe316 ATI Radeon HD 5770 Graphics card
with 10-bit grayscale resolution.2 Stimuli were dis-
played using a linearized look-up table, generated by
calibrating with a Color-Vision Spyder3 Pro sensor.
Maximum luminance output of the display monitor
was 100 cd/m2 (50 cd/m2 mean luminance after
calibration), the frame rate was set to 100 Hz, and the
resolution was set to 1024 3 768 pixels. Single pixels
subtended 0.03818 of visual angle (i.e., 2.23 arc min.)
when viewed from 1.0 m. Head position was main-
tained using a chin rest, and participant input was
recorded via keyboard press.

Stimuli

All stimuli consisted of synthetic visual noise
patterns (see Figure 1A) constructed in the Fourier
domain using MATLAB (MathWorks, Natick, MA)
and corresponding Signal Processing and Image
Processing toolboxes. The visual noise stimuli were
created by constructing a polar matrix for the
amplitude spectrum and assigning all coordinates the
same arbitrary amplitude coefficient (except at the
location of the DC component, which was assigned a
value of 0). The result is a flat isotropic broadband
spectrum (i.e., a¼ 0.0), referred to as the template
amplitude spectrum (Hansen & Hess, 2006; Tadmor &
Tolhurst, 1994). In this form, the a of the template
spectrum can be adjusted by multiplying each spatial
frequency’s amplitude coefficient by f�a. The phase
spectra were constructed by assigning random values
from –p to p to the different coordinates of a polar
matrix while maintaining an odd-symmetric phase
relationship to maintain conjugate symmetry. The
noise patterns were rendered into the spatial domain by
taking the inverse Fourier transform of an a-altered
template amplitude spectrum and a given random
phase spectrum. The phase spectrum for all stimuli
presented within a trial was identical but randomized
from trial-to-trial. We generated 1/f a noise stimuli at
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nine different diameters3 (0.758, 1.008, 1.418, 2.008,
2.838, 4.008, 5.668, 8.008, and 11.308). RMS contrast
(the standard deviation of all pixel luminance values
divided by the mean of all pixel luminance values) was
fixed to 0.15 for each stimulus size individually. Our
RMS contrast calculations for each image were based
only on the image region lying inside the circularly
windowed area, thus excluding zero-contrast regions.

Psychophysical procedures

The experimental conditions consisted of five refer-
ence slope values and nine stimulus sizes for a total of
45 stimulus condition blocks, which were repeated

twice by all observers for a total of 90 blocks. Stimulus
size was constant within each block, and the order of
blocks was randomized between repetitions and ob-
servers. Slope (a) discrimination thresholds were
estimated by a temporal three-interval, two-alternative
‘‘odd-man-out’’ forced choice task identical to that
used by Hansen and Hess (2006) and Johnson et al.
(2011). Participants indicated which, either the first or
third stimulus interval, had a different a from the
second—reference—stimulus interval (see Figure 1B).
At the beginning of each trial, a white (RGB [255, 255,
255]) fixation cross, which subtended 0.38 of visual
angle in diameter, was presented for 1 s at the center of
the screen. This was followed by three stimulus
presentation intervals that each lasted 250 ms and were

Figure 1. (A) Examples of the five reference a values (0.4, 0.7, 1.0, 1.3, and 1.6) used in this experiment. The phase spectrum of all five

stimuli presented is identical. (B) The amplitude spectrum for all five reference a values and nine stimulus sizes presented to

observers in this study. Increases in stimulus size lead to additional low spatial frequencies for all stimuli. The smallest stimulus (0.758)

contained nearly four octaves of spatial frequency content (minsf¼ 1.346 cpd, maxsf ¼ 22.881 cpd) while the largest contained

approximately eight octaves of spatial frequency content (minsf ¼ 0.088, maxsf ¼ 22.881 cpd). (C) The general psychophysical

procedure employed in our experiment. Slope (a) discrimination thresholds were estimated with a 3-IFC, 2-AFC ‘‘odd-man-out’’
psychophysical procedure. Observers indicated which, of the first or third interval, was different from the second—reference—

interval. The difference in a shown here is exaggerated for print.
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interlaced by a blank screen (mean luminance) pre-
sented for 500 ms. The second interval always
contained the reference amplitude spectrum, set at one
of the five fixed reference a values (0.4, 0.7, 1.0, 1.3, and
1.6). One interval, either the first or the third, contained
the same amplitude spectrum as that of the reference
interval, while the other contained the test amplitude
spectrum with a steeper a than the a of the reference
stimulus. At the end of each trial, the screen was set to
mean luminance, and participants indicated which
interval, either the first or the third, they perceived as
being the odd-man-out via keyboard press. Viewing
was binocular and the duration of the response interval
was unlimited.

The trial-to-trial change in the image’s a was
controlled by a 1-up, 2-down staircase procedure using
the PAL_AMUD_setupUD and PAL_AMUD_upda-
teUD functions from the Palamedes toolbox for
MATLAB (Prins & Kingdom, 2009). The staircase
approached the reference a value from above. The
initial a of the odd stimulus was reference aþ0.5. The a
of the test interval was decreased in linear steps (step
size down¼ 0.02) toward the reference a when the
observer made two consecutive correct responses and
was increased in linear steps (step size up¼ 0.02) back
toward the start value when the observer made an
incorrect response (1-up/2-down rule). The procedure
targeted the 70.71% performance level on a psycho-
metric function (Kaernbach, 1991; Prins & Kingdom,
2009). To prevent extreme a values when estimating
thresholds, the minimum possible a of the odd stimulus
was set to the reference a value and the maximum was
set to an a¼ 3. The experimental block continued until
12 reversals had occurred, at which point the block was
terminated. Thresholds were estimated by averaging

the a values of the odd stimulus for the last five
reversals.

Results

The average effects of stimulus size on a discrimi-
nation thresholds (Das) are shown in Figure 2.
Discrimination thresholds were high for small stimuli
and fell mostly monotonically as stimulus size increased
up to 11.38 of visual angle, F(8, 48)¼ 41.85, p , 0.001,
g2p ¼ 0.875. We also find a main effect of reference a on
discrimination thresholds, F(4, 24)¼ 4.10, p¼ 0.011, g2p
¼ 0.406, well-explained by a cubic trend with coeffi-
cients [�1 2 0�2 1], F(1, 6)¼31.16, p¼0.001, g2p¼0.839.
This agrees with previous reports of a discrimination,
wherein discrimination thresholds increase from a
reference a of 0.4 to 0.7, decrease when the reference a
steepens to 1.0 and 1.3, and finally increase for a
reference a of 1.6 (Hansen & Hess, 2006; Johnson et al.,
2011; Knill et al., 1990; Tadmor & Tolhurst, 1994). The
interaction term between stimulus size and reference a
was not statistically significant, F(32, 192)¼ 0.675, p¼
0.906, g2p ¼ 0.101, and therefore the variation in
thresholds across reference a was not affected by
stimulus size. It is surprising that tuning to a is
preserved across stimulus size here given previous
findings that a discrimination thresholds to large
stimuli showed no tuning to a (Thomson & Foster,
1997). Notice that discrimination thresholds for the 88
stimulus are flat, showing no specific tuning to a like
the other stimulus sizes. This may be attributed to noise
in our measurements as the typical tuning function is
observed at the larger stimulus size of 11.38. Preserved

Figure 2. Summary results of the slope discrimination experiment. (A) a discrimination thresholds as a function of stimulus size for

each of the five reference a values. As expected, thresholds decreased as a function of an increase in stimulus size. For reference as of
1.0 and 1.3, thresholds appear to decrease rapidly up to a stimulus size of approximately 2.838. However, our analyses show no

interaction of stimulus size by reference a. (B) The identical data as in (A) but shown with reference a on the x-axis. Each color in this

figure corresponds to the reference a (see legend in [A]), while the increase in opacity of the lines marks the increase in stimulus size.

Tuning to a was preserved for all stimulus sizes other than 88. Error bars represent the standard error of the mean.
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tuning is indicative of a mechanism that can maintain
sensitivity to a even when low spatial frequency content
is added to the image. We explore the form of channel
suppression in the modeling section that follows.

Model

Our modeling approach combines previous models
of spatial summation and broadband contrast percep-
tion (Baker & Meese, 2011; Haun & Peli, 2013; Meese
& Baker, 2011). The input to our model were 1/f a noise
images at the same resolution as that of our experiment
and go through multiple image processing stages (see
Figure 3A). Images were spatially filtered by a bank of
spatial frequency filters with a bandwidth of ;1.5
octaves4 (FWHH) and preferred spatial frequencies of
0.5, 1, 2, 4, 8, 16, and 32 c/8. The spatial frequency
selectivity of our filters (D) was defined as radial profile
of a log Gaussian,

D fð Þ ¼ e
� ln f=fOð Þ2

2 ln r=fOð Þ2 ð2Þ
where fO sets the center spatial frequency of the filter
(see above), and the ratio r/fO expresses the spatial
frequency bandwidth (FWHH) of our filters (r/fO ¼
0.65, ;1.5 octaves). Note that because our stimuli are

isotropic (i.e., equal in contrast for all orientations), we
do not include any orientation selective filtering in this
model. Each spatial frequency filter was adjusted in
sensitivity to follow that of a simple approximation of
the contrast sensitivity function (CSF) defined as a log-

Gaussian (CSf ¼ e� log10f�log10fpeakð Þ2
�
2r2

f

� �
), where fmarks

the center spatial frequency of the filter, and fpeak (1 c/8)
is the peak spatial frequency, and r (1.18) the standard
deviation of the CSF (Daly, 1987; Larson & Chandler,
2010). The output of the spatial filtering stage was then
multiplied by a spatial attenuation function that
describes the decrease in sensitivity that follows the
increase in eccentricity from the center of the visual
field (see Figure 3B). We use the spatial attenuation
function (S), which describe contrast sensitivity across
eccentricity, defined by Baldwin, Meese, and Baker
(2012) for each spatial frequency filter.

S ¼ �log10
10b1E

10 b1�b2ð Þv þ 10 b1�b2ð ÞE

� �
þN ð3Þ

The parameters b1 and b2 control the slope of the
functions, E is eccentricity (defined in cycles), v controls
the location of the knee point, while N controls the
vertical location of the function (the MATLAB code to
generate spatial attenuation functions is available
online from Baker & Meese, 2011). All parameter
values for these functions were fixed and taken from

Figure 3. (A) Broadband spatial summation model diagram. The spatially attenuated responses first went through an integration

aperture that limited the spatial integration of each spatial frequency channel to 12 cycles of their peak frequency. This was then

followed by a contrast gain control operation, which includes a bias in suppression strength towards lower spatial frequency channel

responses (wf). The filter responses are subsequently summed using Minkowski summation, and then summed over space via a

second Minkowski summation stage. Finally, the summed output undergoes a second contrast gain control stage (response

nonlinearity) prior to the decision stage and discrimination threshold generation. (B) The retinal inhomogeneity function used here to

describe the decrease in relative sensitivity for each spatial frequency filter according to the radial distance in degrees. Note that the

x-axis marks radial distance from the center of the image in degrees of visual angle but the relative sensitivity of spatial attenuation

was calculated in number of cycles of the center spatial frequency of each filter.
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Baker and Meese (2011). We assume that spatial
attenuation is scale invariant, as has been previously
proposed (Baker & Meese, 2011; Baldwin et al., 2012;
Meese & Baker, 2011). This means that the magnitude
of spatial attenuation function for each spatial fre-
quency filter is defined in the number of cycles, which
differs according to the peak spatial frequency of the
filter, and not degrees of visual angle (see Figure 3B).

Additionally, while observers can integrate contrast
over large areas of the visual field, there are neverthe-
less limits to long-range contrast integration that must
be included in our model (Baker & Meese, 2011). We
defined the integration aperture as a circular hard-edge
window centered on the stimulus. All pixels inside the
integration aperture contributed to model output, while
pixels outside were discarded. Just as the spatial
attenuation function, we defined the size of the
integration apertures in number of cycles for each
spatial frequency filter (i.e., the integration aperture is
scale invariant). We set the size of the integration
apertures to 12 cycles, which generated the smallest
RMS error in our model simulations (see see Figure A1
and A2). This is similar aperture size to those found
with previous research on spatial summation with
narrowband stimuli (Baker & Meese, 2011).

Single channel model

To use as a reference for the quality of fits of our
own model, we first measure how a single channel
model performs on our a discrimination threshold data.
We took each of the spatially attenuated filter
responses (the output of the image processing stages
described above) and passed them through a nonlinear
transducer (i.e., contrast gain control equation) that
included a single self-suppression term unbiased for
spatial frequency (Equation 4). This equation is
Cannon’s spatial model of perceived contrast (Cannon,

1995; Cannon & Fullenkamp, 1991), but we omit
summation across spatial frequency channels. The filter
responses were then summed over space with Min-
kowski summation with the exponent taking the value
m,

R ¼
X
x;y

r x; yð Þj jp

Sþ r x; yð Þj jq
� �m !1

m

: ð4Þ

We set discrimination thresholds for the model when
the absolute difference between model responses for the
reference a (Ra) and the test a (RDa) equaled the
sensitivity parameter K,

K ¼ Ra � RDaj j ð5Þ
Each spatial frequency model had five free param-

eters, p, q, m, S, and K. Model fitting was accomplished
by optimizing the free parameters with fminsearch in
MATLAB to minimize the sums of squared error
between model output and observer thresholds. The
resulting model fits of the single channel with a spatial
frequency filter of 0.5 c/8 are shown in Figure 4 (the
output of models with other spatial frequency can be
found in the Appendix, Figure A3). The single channel
model with peak spatial frequency of 0.5 c/8 captures
the general facilitation effects of an increase in stimulus
size on discrimination thresholds. However, the single
channel model grossly overestimates the magnitude of
facilitation at small stimulus sizes, and levels off too
quickly (stimulus size of 1.418 for reference as 0.4–1.0)
compared to our observer data. Evidently, the response
of a single low spatial frequency channel (or any other
single channel spatial frequency) is insufficient to
accurately capture the psychophysical performance of
our observers. It is more likely, particularly given the
nature of our stimuli, that the responses of more than a
single spatial frequency channel are contributing to
discrimination. We explore how two different multi-
channel models would perform in the following section.

Figure 4. Fits of the single channel model with spatial frequency of 0.5 c/8. Single channel model responses with filters of other peak

spatial frequencies are shown in Appendix Figure A3. The data points mark the discrimination thresholds of observers for a given

reference a, separated into subplots (reference a is indicated in the bottom left of the subplot). The single channel model outputs are

shown as lines.
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One and two stage multichannel models

Two multichannel model variants are tested here:
one that includes a single contrast gain control (i.e., a
nonlinear transducer) stage, and a second model with
an additional contrast gain control stage prior to
decision. For both, the first contrast gain control stage
(Equation 6) and summation over space (Equation 7)
are taken directly from Haun and Peli (2013):

resp x; yð Þ

¼
X
f

r x; yð Þf
			 			p1

Sþ r x; yð Þf
			 			q1 þ wf r x; yð Þf

			 			q1
2
64

3
75
m1

0
B@

1
CA

1
m1

ð6Þ

As in Equation 4, r represents the filter responses of
each spatial frequency channel over space and p1 and q1
are the excitatory and inhibitory nonlinearities, re-
spectively. We subscript the excitatory and inhibitory
exponents here because the second multichannel model
includes two stages of contrast gain control with
different excitatory and inhibitory exponents. Equation
6 builds on Equation 4 (the single channel model) by
adding a second term in the denominator that scales the
output of each spatial frequency filter by wf. There is
psychophysical and neurophysiological evidence that
low spatial frequency channels receive a dispropor-
tionate amount of suppression when responding to
broadband, or naturalistic images (Bex et al., 2009;
Hansen, Ellemberg, & Johnson, 2012; Hansen, Jacques,
Johnson, & Ellemberg, 2011; Haun & Essock, 2010;
Meese & Hess, 2004; Webster & Miyahara, 1997). This
is implemented in Equation 6 by making wf inversely
proportional to spatial frequency (1/f) such that low
spatial frequency responses received more divisive
inhibition than weaker high spatial frequency respons-
es. Here, we set wf to 1/f b with b ¼ 1.0, which
approximates the average amplitude spectrum of
natural scenes (we use b here to identify the model
parameter instead of a, the image amplitude spectrum
slope; Billock, 2000). Note that we opted to set b to 1.0,
but others have selected shallower values in the past
that appear to generate reasonable fits as well (Haun &
Peli, 2013). The filter responses were then summed
across spatial frequency via Minkowski sum set by the
exponent m1.

The summed channel responses were then combined
over space by a second Minkowski sum with the
exponent m2,

R ¼
X
x

X
y

respm2
x;y

 ! 1
m2

ð7Þ

In the single stage model, the output of Equation 7 is
fed to the decision stage of the model (Equation 5).

While the sensitivity parameter K was free in our single
channel model fitting, it was fixed when fitting the
multichannel models. We selected the value of the K
parameter by fitting the single stage multi-channel
model to our data with K as the only free parameter, all
other parameters were fixed to values from other
summation models (p1¼ 2.4, q1¼ 2.0, m1 ¼ 4.0, m2¼
4.0, S ¼ 1). The K values were then used as the
sensitivity parameter in both the single stage and two
stage model variants. Thus, the single stage model had
five free parameters (p1, q1, m1, m2, S) that were
optimized in the same manner as the single channel
model. The resulting fit of the single-stage multichannel
model of broadband spatial summation is shown in
Figure 5A. This model performs better than the single
channel models, but is incapable of accurately captur-
ing our data (r2¼ 0.129). While all model fits show a
decrease in discrimination thresholds according to an
increase in stimulus size, all of the models overestimate
the summation at large stimulus sizes. Evidently, a
model of broadband spatial summation with a single
contrast gain control stage is incapable of capturing the
effects measured here. However, previous models of
suprathreshold spatial summation have included a
second non-linear transducer following summation
(Meese & Baker, 2011). We decided to include this
second contrast gain control stage to our model in
order to verify whether it could improve model fits,
particularly at larger stimulus sizes. This second
contrast gain control term serves to nonlinearly
transform the spatially summed output of Equation 7
for input to the decision stage (Baker, Meese, &
Georgeson, 2007; Meese, 2010; Meese & Baker, 2011;
Meese et al., 2006),

Rfinal ¼
Rp2

Zþ Rq2
ð8Þ

where p2 and q2 represent the second excitatory and
inhibitory nonlinearities, and Rfinal is the input to the
decision stage (Equation 5). The fits of the two-stage
model to a discrimination thresholds are shown in
Figure 5B. The output nonlinearity to the model
improves fits significantly. However, the two-stage
model has three additional free parameters (p2, q2, Z)
compared to the single-stage model. The addition of
three free parameters is unlikely to explain the
improvement in fits between the single and two-stage
models. These two models are, however, nested models
and we therefore verify that the improvement in model
fits were not attributed to the additional free param-
eters by conducting an extra sums of square F test and
calculating AIC scores for each model (Akaike, 1974).
The results of both analyses support that the two-stage
model (AIC2-stage ¼�349.11) is a better descriptor of
our data than the single stage model (AIC1-stage ¼
�257.94) even with the additional free parameters, F(3,
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37)¼ 94.54, p , 0.001. The addition of a second
nonlinearity appears to be an important addition in
characterizing the spatial summation of broadband
contrast.

We defined the summation order in our model
(summation over channels precedes summation over
space) in a manner identical to that of the model of
perceived broadband contrast defined by Haun and Peli
(2013). Their original model makes no particular claim
in regard to the order of summation operations as they

set the Minkowski exponent to be equal for both, and
therefore both operations can be collapsed into one.
The model parameters we estimate here differ for each
summation operation: summation over spatial fre-
quency channels is near linear (m1 ¼ 1.11), while
summation over space is closer to standard Minkowski
summation (m2 ¼ 4.65). The order of summation
operations here is an important factor in the fits of the
model, as implementing two Minkowski summations
with different exponents in different orders will alter

Figure 5. (A) Single stage model fits to observer a discrimination thresholds. Each panel separates a discrimination thresholds by

reference a. The circle markers indicate the mean of observer thresholds and the lines are model predictions. The model performs

well and captures nearly 86% of the variance in our data. The best fitting parameters of the single stage model were: p¼ 2.81, q¼
2.05, m1 ¼ 4.33, m2¼ 4.09, and S ¼ 0.98. (B). Model fits of the two-stage model of broadband spatial summation. The two-stage

model explained approximately 91% of the variance in our data. The best fitting parameters of the two-stage model were: p1¼ 2.54,

q1¼ 2.18, p2¼ 7.03, q2¼ 5.93, m1¼ 1.11, m2¼ 4.65, S¼ 0.98, and Z¼ 0.96. While the two-stage model has more free parameters

than the single stage model, the two-stage model is still a better descriptor of our data (DAIC1¼121.09 and DAIC2¼0). (C) Model fits

of the two-stage model when the first Minkowski sum is taken over space and over channels second. Best fitting parameters were: p1
¼ 2.75, q1¼ 2.30, p2¼ 7.01, q2¼ 5.65, m1¼ 6.27, m2¼ 1.81, S¼ 0.99, and Z¼ 0.95. The different order of operations had a small

negative effect on the quality of the fits as it worsened fits for discrimination thresholds with a reference a of 1.0 and 1.3. Note that in

both models (B) and (C), the exponent of the Minkowski summation over channels is less than 2, which may indicate near linear

summation across channels regardless of the order of operations.
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the results. We chose to verify how summation over
space preceding summation over channels might affect
model predictions by fitting a model with this
summation operation order to our data. Fitting
procedures and starting parameters were identical to
the original model developed. Fits for the addition
model with reversed summation order are shown in
Figure 5C. The model captures most of the observer
data, but does overestimate the magnitude of spatial
summation for reference as of 1.0 and 1.3 at larger
stimulus sizes. This lowered explained variance by
nearly 9% compared to the two-stage model where
spatial frequency channel responses are summed first.
Our original two-stage spatial summation model, where
spatial frequency channel responses are summed first,
appears to be the best descriptor of our data.
Interestingly, in the fitting of both models, the
Minkowski exponent for summation over channels
remained below a value of 2 (channels first: m1¼ 1.11,
space first: m2 ¼ 1.81), which is indicative of a
quasilinear summation process over channels, irre-
spective of the order of summation.

Discussion

Decades of studies on spatial vision have generated
substantial knowledge of how the early visual system
processes luminance contrast (Baker & Meese, 2011;
Campbell & Green, 1965; Graham & Robson, 1987;
Graham, Robson, & Nachmias, 1978; Graham &
Sutter, 1998; Landy & Oruç, 2002; Legge, 1984; Meese
& Baker, 2011; Meese & Summers, 2007). These studies
have continuously relied on narrowband stimuli to
measure the properties of a single channel in isolation.
However, the retinal image formed by the visual world
is broadband, and therefore multiple channels with
different tuning properties will be simultaneously active
and interact with each other. Thus, to understand how
the visual system operates, it is important to use stimuli
that are a better representation of the natural world
(Essock et al., 2009; Hansen et al., 2003, 2015; Hansen
& Hess, 2012; Haun & Peli, 2013; Meese & Holmes,
2007, 2010; Roeber et al., 2008).

Here, we explored whether discriminability of 1/f a

noise broadband stimuli improves as a function of an
increase in stimulus size (i.e., broadband spatial
summation). We measured discrimination thresholds to
broadband stimuli with an a discrimination task that
asked of observers to discriminate between noise
images that differed in a. As the a of an image
represents the distribution of contrast across spatial
frequency, a discrimination thresholds can be inter-
preted as a general measure of broadband contrast
sensitivity and thus, serve as a proxy to traditional

measurements of spatial summation. Amplitude spec-
trum slope discrimination thresholds decreased ac-
cording to an increase in stimulus size, indicating that
broadband stimuli do undergo spatial summation. The
decrease in thresholds did not alter tuning to a.
Discrimination thresholds were always lowest when the
reference a equaled 1.0 or 1.3, regardless of stimulus
size. Previous studies on spatial summation at supra-
contrast levels have found summation to be best
defined as a cascade of operations, whereby the
summation stage is preceded and followed by contrast
gain control stages (Baker & Meese, 2011; Meese &
Baker, 2011). While these studies have been exclusively
conducted with narrowband stimuli, the architecture
they identified is an excellent starting point from which
to develop a model of broadband spatial summation.
Indeed, our model required only a few adjustments to
account for broadband stimulus input. First, contrast
gain control operations were weighted according to
spatial frequency in order to apply stronger suppression
towards lower spatial frequencies than high. Second,
summation over differently tuned spatial frequency
channels appears to be near linear while summation
over space has a Minkowski exponent of approxi-
mately 4, concordant with typical Minkowski summa-
tion.

Contrast gain control biases

It is unclear whether or not there is a spatial
frequency bias in contrast gain control strength for
suprathreshold spatial summation measured with
narrowband stimuli. Spatial summation is scale in-
variant, and thus the magnitude of summation effects is
identical across spatial frequency when measured with
narrowband stimuli (Baker & Meese, 2011). However,
spatial frequency biases in contrast gain control are
well-documented in masking studies and suggest
stronger divisive inhibition towards low spatial fre-
quencies and high temporal frequency (Cass et al.,
2009; Meese & Holmes, 2007, 2010). Similar low spatial
frequency biases in contrast gain control should be
expected in natural scenes perception given their 1/f a

spectra and, indeed, have been observed in measure-
ments of perceived broadband contrast (Haun & Peli,
2013). Given that our stimuli also had 1/f a amplitude
spectra, we included a nearly identical low spatial
frequency bias in contrast gain control in our model as
that defined by Haun and Peli (2013). The low spatial
frequency bias was obtained by multiplying the
response of each spatial frequency filter by the term wf

¼ 1/f b with b set to 1.0. This bias in contrast gain
control is steeper than that used by Haun and Peli
(2013). We did not attempt to fit the exact value of b in
this study but did find that bs set to be shallower than
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1.0 generated worse fits than when the b of the
weighting term was 1.0 or steeper: varying b between
1.0 and 1.6 (the steepest reference a used here for our
stimuli) did not significantly impact the goodness-of-fit
of the model. We selected a b set to 1.0 in our
simulation as this value is closest to the average a of
natural scenes, and best represents the typical input
received by the visual system (Billock, 2000; Hansen &
Essock, 2005; Tolhurst et al., 1992), but other, steeper,
values may also be appropriate.

There are additional aspects of bias suppression in
contrast gain control that we do not estimate in our
modeling and may limit our ability to measure the
exact form any spatial frequency bias. For example, we
do not attempt to define any suppressive interactions
between orientation tuned channels (Foley, 1994;
Meese & Holmes, 2007, 2010), distant spatial frequency
channels (Foley, 1994) or different spatial locations
(i.e., lateral suppression; Cannon & Fullenkamp, 1991;
Chen & Tyler, 2001, 2008; Meese, 2004; Xing &
Heeger, 2000). A dataset that explicitly sets out to
describe these additional suppressive processes may be
better suited to characterize biases in suppression, but
this is beyond the scope of the current study.

Linearity and order of summation operations

Models of spatial summation developed with nar-
rowband stimuli have found the processing of sum-
mation to be best defined as a cascade of nonlinear
transducers (e.g., contrast gain control) and summation
stages (Baker & Meese, 2011; Foley et al., 2007; Meese,
2004; Meese & Baker, 2011; Meese & Summers, 2007;
Wilson & Gelb, 1984). While details vary across
models, the most recent implementation found sum-
mation to be linear within the integration aperture
(pixel-wise summation), while summation across aper-
tures is nonlinear. These models were not designed to
account for broadband stimulus input. They can be
adapted to do so by including an additional suppressive
term in the contrast gain control operation that may or
may not bias suppression of spatial frequency channels,
as has been demonstrated here and elsewhere (Alam et
al., 2014; Chandler, Gaubatz, & Hemami, 2009; Haun
& Peli, 2013; Huang & Dai, 2018). That said, our model
is not a simple replication of narrowband models of
spatial summation, as we have to account for the
integration of differently tuned spatial frequency
channel responses. Evidently, models of spatial sum-
mation built with narrowband stimuli cannot comment
on the order of operations between summation over
channels (either spatial frequency or orientation) and
summation over space. Previous models of broadband
contrast perception either make no assumption on the
order of summation operations (by placing the same

Minkowski exponent for both; Haun & Peli, 2013) or
place summation over channels prior to summation
over space (Alam et al., 2014; Chandler et al., 2009).
We found the best fitting model to sum over channels
prior to summing over space. This means that
summation is late in our processing stream, and
potentially differs from narrowband models that will
sum over small regions of space early on (e.g., Baker &
Meese, 2011).

We also found that summation across spatial
frequency channels in our model is near linear. The
Minkowski exponent for summation across channels
was 1.11, which suggests that all channels contribute
relatively equally to spatial summation. Other models
that include summation across multiple, differently
tuned, spatial frequency channels have typically used
Minkowski summation exponents of 3.0 or 4.0, which
is intended to bias the response towards a spatial
frequency specific, or winner-take-all, response (Can-
non, 1995; Haun & Peli, 2013). Linear summation is
not, however, completely unexpected. There are many
spatial summation or binocular summation models that
implement linear summation across narrow regions of
space or across eyes (Baker & Meese, 2011; Foley et al.,
2007; Huang & Dai, 2018; Meese, 2004; Meese &
Baker, 2011; Meese & Summers, 2007). There are also
models of broadband visual masking that use Min-
kowski exponents of less than 2.0 when summing over
visual channels (orientation and spatial frequency;
Alam et al., 2014; Chandler et al., 2009). We should
note that while the summation process appears to be
near linear, the input to the summation is not. The
spatial frequency channel responses are rectified and go
through a nonlinear transducer (contrast gain control)
prior to summation. Nevertheless, the finding that the
summation of spatial frequency channel responses is
near-linear is interesting as it suggests that the
responses of all spatial frequency channels are impor-
tant in the discrimination of broadband contrast.

Sensitivity to a

We were surprised to observe that tuning to a was
preserved across all stimulus sizes used in this study.
Lower discrimination thresholds for reference as
between 1.0–1.3 is common when discrimination
thresholds are measured with smaller stimuli (18–28;
Hansen & Hess, 2006; Knill et al., 1990). However, the
only study that used large images to measure a
discrimination thresholds (Thomson & Foster, 1997)
found no indication of tuning to as between 1.0 and
1.3. There are methodological differences between the
current study and that of Thomson and Foster (1997)
that may account for the discrepancy in results. To
measure a discrimination thresholds, we opted to
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generate synthetic broadband noise stimuli that offer
complete control over the construction of the ampli-
tude and phase spectra. These noise images are
naturalistic only in their amplitude spectrum but are a
practical choice because they simplify the investigation
of the combination of contrast across spatial frequency
and space, and control for any additional factors that
may influence a discrimination. One such factor is the
uneven distribution of luminance contrast across
orientation in natural scenes, with more contrast
present at cardinals than obliques (Betsch, Einhäuser,
Körding, & König, 2004; Essock, DeFord, Hansen, &
Sinai, 2003; Hansen & Essock, 2006; Hansen et al.,
2003). Thomson and Foster (1997), however, used
natural and phase randomized natural scenes and
physically modulated the a of these images, which
preserves biases in contrast across orientation even for
phase scrambled images. Humans are not equally
sensitive to orientation and in broadband images as
they have worse sensitivity to cardinal than oblique
orientations (Essock et al., 2003; Hansen et al., 2015;
Hansen, Haun, & Essock, 2008; Hansen & Essock,
2006; Haun & Essock, 2010). When measuring a
discrimination thresholds with natural scenes, it is
likely that any biases in sensitivity to oriented contrast
will influence the ability of observers to correctly
complete the a discrimination task and consequently
alter tuning to a and may account for any discrepency
between our findings and those of Thomson and Foster
(1997).

Conclusion

We verified if broadband stimuli that contain the
characteristic 1/f a amplitude spectrum of natural
scenes are subject to spatial summation (i.e., increase in
sensitivity according to an increase in stimulus size) and
if psychophysical models of summation developed for
narrowband stimuli could be adapted to describe
broadband spatial summation. We found broadband
stimuli are subject to spatial summation: discrimination
thresholds were inversely related to stimulus size. We
found that a model of spatial summation developed
with narrowband stimuli (Baker & Meese, 2011; Meese
& Baker, 2011) was capable of capturing our broad-
band summation effects when modified to account for
the broadband aspects of our stimuli. Our data were
best fit by a two-stage contrast gain control summation
model where spatial frequency channel responses
undergo a bias contrast gain control operation that
suppresses low spatial frequency channel responses
more than high. Summation over spatial frequency
channels was near linear and preceded summation over
space, which was nonlinear with a Minkowski exponent
of approximately 4.0. Our efforts in this study were

concentrated on the processing of spatial frequency
content and omitted other aspects of natural scenes
(e.g., the distribution of contrast across orientation)
that are relevant to perception. How psychophysical
models of spatial vision may be further adapted to
incorporate additional components of natural scenes
remains to be determined. Nevertheless, our findings
here are a demonstration that narrowband psycho-
physical models can serve as adequate starting points to
develop models of broadband contrast perception.

Keywords: spatial summation, amplitude spectrum
slope, contrast gain control, nonlinear summation,
natural image, broadband contrast, spatial frequency
channels, contrast integration, computational modeling
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Footnotes

1 We define the spatial frequency content here in
cycles per degree of visual angle, and an increase in
stimulus size as an increase of a window size on a
stimulus background. In this context, the resolution
upper limit is set by the pixel density of the stimulus
and is unchanging across stimulus area.

2 Note that we only used 256 gray levels from the
palette of 1,024 (pixel intensity was defined in the range
of [0–255]).

3 An increase in the area of a stimulus may affect
summation differently across stimulus factors because
of factors like retinal inhomogeneity (Baker & Meese,
2011; Hess & Hayes, 1994; Kelly, 1984; Meese & Baker,
2011). This has previously motivated the use of other
methods that keep stimulus diameter fixed (e.g., ‘‘Swiss-
cheese’’ stimuli; Baker & Meese, 2011; Meese & Baker,
2011). These methods are innapropriate for our
stimulus type. The Swiss-cheese method, for example,
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which manipulates area of a sine-wave carrier by a
raised plaid pattern, will introduce sidebands around
the carrier frequency, and for a broadband noise image,
will alter the spatial frequency spectra of the stimulus,
which is explicitly something we want to avoid. When
measuring a discrimination thresholds, it is important
for the entire spatial frequency spectrum of the image
to be unaltered for observer thresholds to show peak
sensitivities at as of 1.0–1.3. Observer thresholds differ
significantly from this typical tuning when segments of
spatial frequency content are removed (Richard,
Hansen, Ellemberg, & Johnson, 2013).

4 Note that there is little empirical evidence to
support constant bandwidth spatial frequency channels
in the human visual system, as most evidence indicates
that the bandwidth of spatial frequency channels
decreases with increasing spatial frequency (e.g.,
Wilson, McFarlane, & Phillips, 1983). However, as this
study is a preliminary step in computationally de-
scribing the visual discrimination of broadband con-
trast, we opted to simplify our spatial frequency filter
bank by using constant 1.5 octave bandwidth filters.
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Appendix

Integration aperture radius

The radius of the integration aperture (12 cycles) was
chosen by fitting the two-stage models (summation
over channels first) with different aperture sizes (from 4
to 64 cycles) and selecting that which generated the
smallest RMSe (see Figure A1 and A2). Our results
resemble those of Baker and Meese (2011), who found
that contrast integration extends for at least eight
cycles, with an optimal summation region of approx-
imately 12 cycles. However, unlike their findings, larger
integration apertures in our model resulted in poorer
fits to our data than smaller apertures.
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Figure A1. Integration aperture size effects on the fits of both the single stage (dashed line) and two-stage (solid line) models of

broadband spatial summation for each reference a. RMSe for both models was smallest for an aperture size of 12 cycles (see Figure

A2). For smaller stimulus sizes, models underestimated thresholds for shallow reference as for small stimulus sizes, while the two-

stage model was capable of reaching human observer thresholds for larger stimuli. For steeper reference as, both models

overestimated thresholds for smaller stimulus sizes. As the aperture size increased, both models underestimated thresholds of large

stimulus sizes for steep reference as. Surprisingly, we found little change in thresholds for shallow reference as at larger stimulus sizes.
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Figure A2. Change in model RMS error according to the radius

of the integration aperture of the two-stage model. RMSe

decreases as the integration aperture size approaches 12 cycles,

and begins in to increase once it exceeds 16 cycles.
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Figure A3. Fits of the single channel model for all spatial frequencies used in this study (0.5–32.0 c/8). The data points mark the

discrimination thresholds of observers for a given reference a, separated into subplots (reference a is indicated in the bottom left of

the subplot). The single channel model output are shown as lines. Note that for higher spatial frequencies the model was incapable of

fitting observer data and thus outputted the highest a discrimination thresholds possible (Da ¼ 0.3)
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