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1. Introduction

Will that berry taste good? Is that table strong enough to sit on? Questions like these require a rea-
soner to predict whether an object has a feature that has not yet been observed. Two versions of this
basic inductive challenge can be distinguished. Across-object generalization is a problem where a rea-
soner observes one or more objects that have a given feature (e.g. Tim has feature F) then decides
whether other objects have the same feature (does Tim’s twin brother Tom have feature F?). Across-
feature generalization is a problem where a reasoner observes one or more features of a given object
(e.g. Tim is obese) then makes inferences about other features of the same object (does Tim have dia-
betes?). These two generalization problems form a natural pair, and both can be viewed as inferences
about the missing entries in a partially-observed object-feature matrix. Fig. 1 shows an example
where the objects are animals of different species and the features are biological or behavioral attri-
butes. Because the mouse and the rat are similar, observing that the mouse has gene X suggests that
the rat is likely to carry the same gene (across-object generalization). If gene X causes enzyme Y to be
expressed, then observing that the mouse has gene X suggests that the mouse is likely to express en-
zyme Y (across-feature generalization).

Across-object and across-feature generalization are typically studied in isolation but these two
forms of generalization often interact. For example, given that Tim is obese, we might predict that
Tim’s twin brother Tom is more likely to have diabetes than an unrelated individual called Zach. This
prediction appears to rely on across-object generalization (since Tim is obese, Tom is likely to be ob-
ese) and on across-feature generalization (if Tom is obese, then Tom is likely to have diabetes). Sim-
ilarly, if we learn that the mouse in Fig. 1 carries gene X and that gene X causes enzyme Y to be
expressed, we might predict that the rat is likely to express enzyme Y (Fig. 1c). Both of these predic-
tions can be formulated as inferences about the missing entries in an object-feature matrix. We devel-
op an account of generalization that handles inferences of this kind, and that includes both across-
object and across-feature generalization as special cases.

Our approach is based on the idea of integrating multiple knowledge structures. An object structure
can capture relationships among objects—for example, a structure defined over the three individuals
previously introduced can indicate that Tim and Tom are more similar to each other than either is to
Zach. A feature structure can capture relationships between features—for example, one feature struc-

Across-object generalization

(a) The mousejhas iene X (d) has gnaws climbs s has has
) sharp ; gene  enzyme
teoth wood  trees  white X v
The rat has gene X.
mouse 1 1 0 1 1 ?

(b) Across-feature generalization rat 1 1 0 0 ? ?

The mouse has gene X. sheep 0 0 0 1 ? ?

The mouse has enzyme Y. squirrel ? 1 1 0 ? ?

? ? ? ? ?

(C) Generalization across objects and features

The mouse has gene X.

The rat has enzyme Y.

Fig. 1. Generalization problems involving a set of animals and their features. (a) Across-object generalization is a problem
where a reasoner makes inferences about the distribution of a single feature—here “has gene X". The example shown is a one
premise argument: given that the statement above the line is true, the reasoner must decide whether the statement below the
line is likely to be true. (b) Across-feature generalization is a problem where a reasoner makes inferences about the features of a
single object. The argument shown here is strong if gene X is known to cause enzyme Y to be expressed. (c) Generalization
problems may require a reasoner to generalize across both objects and features. Here the reasoner is told that a given animal
(the mouse) has a given feature (gene X), then asked to decide whether a different animal (the rat) has a different feature
(enzyme Y). (d) Generalization can be formalized as the problem of filling in the missing entries in an object-feature matrix. The
three problems in (a)-(c) are all special cases of this matrix completion problem.
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ture might indicate that obesity tends to cause diabetes. We show how object and feature structures
can be combined in order to reason about the missing entries in a partially-observed object-feature
matrix.

Previous researchers have explored both object structures and feature structures, but most previ-
ous models work with just one kind of structure at a time (Fig. 2a). Accounts of across-feature gener-
alization (Waldmann, Holyoak, & Fratianne, 1995; Ahn, Kim, Lassaline, & Dennis, 2000; Rehder, 2003)
often use a structure that focuses exclusively on causal relationships between features. For example, a
conventional causal model might specify that obesity causes diabetes without capturing any informa-
tion about relationships between objects. To see the limitations of this approach, suppose that Tim,
Tom and Zach are all obese, that Tim and Tom are identical twins, and that Tim has diabetes. Since
Tom and Zach are both obese, the conventional model will predict that both men are equally likely
to suffer from diabetes. It seems clear, however, that the causal relationship between obesity and dia-
betes is mediated by hidden causal factors, and that Tom and Tim are similar with respect to these
factors. Since Tim’s obesity led to diabetes, Tom’s obesity is likely to have a similar effect, and we
might therefore predict that Tom is more likely than Zach to suffer from diabetes.

Accounts of across-object generalization (also known as property induction, category-based
induction, or stimulus generalization (Shepard, 1987; Osherson, Smith, Wilkie, Lopez, & Shafir,
1990; Sloman, 1993; Heit, 1998; Hayes, Heit, & Swendsen, 2010)) often work with a structure that
focuses exclusively on relationships between categories or objects. For example, Kemp and
Tenenbaum (2009) present a model that uses a tree-structured representation of relationships
between animals in order to account for inferences about blank biological features (e.g. “has enzyme
X"). Models of this kind, however, are unable to reason about features that are causally related to
known features. Suppose, for example, you learn that whales “travel in a zig-zag trajectory” and need
to decide whether bears or tuna are more likely to share this feature (Heit & Rubinstein, 1994). A mod-
el that relies on taxonomic relationships alone is likely to prefer bears, but a model that incorporates
causal relationships between features might choose tuna on the basis that “traveling in a zig-zag
trajectory” is related to other features like swimming and living in the water.

Accounts that rely on feature structures or object structures in isolation are fundamentally limited,
but we show that combining these structures can lead to a more comprehensive account of general-
ization. Like many previous accounts of generalization, we take a probabilistic approach (Shepard,
1987; Anderson, 1991; Heit, 1998; Rehder, 2003; Kemp & Tenenbaum, 2009; Holyoak, Lee, & Lu,
2010). Probability theory alone, however, does not specify how different knowledge structures should
be combined, and we evaluate several alternatives. The output combination approach (OC approach for
short) combines two knowledge structures by combining the outputs that they produce (Fig. 2b). This
approach is related to previous accounts of knowledge integration that rely on simple mathematical
functions such as sums and products to combine the predictions of multiple models (Medin & Schaffer,
1978; Anderson, 1981; Massaro & Friedman, 1990; Lombardi & Sartori, 2007), and is appropriate when
the two knowledge structures correspond to independent modules (Fodor, 1983).

(a) No combination  (b) Output combination  (c) Distribution combination,
Structure combination

°g

response response response

Fig. 2. Approaches to generalization problems where two relevant systems of knowledge are available. (a) A response is
generated that depends on only one of the systems. (b) A response is generated by using a simple mathematical function such as
a weighted average to combine the outputs generated by each system in isolation. (c) The systems themselves are combined to
generate a response. We consider two versions of this approach: the distribution combination model combines systems at the
level of probability distributions, and the structure combination model combines systems at the level of graph structures.
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If the knowledge structures do not correspond to separate modules, the two may be combined
more directly (Fig. 2c). We consider two possibilities. The distribution combination approach (DC ap-
proach for short) combines two knowledge structures by multiplying the prior distributions that they
capture. Multiplying prior distributions provides a probabilistic way to capture the intuition that an
outcome is likely only if it is consistent with both component knowledge structures. The structure
combination approach (SC approach for short) combines two knowledge structures by creating a third
structure that corresponds to a graph product of the two component structures. One important differ-
ence between these approaches is that the DC approach predicts that object and feature structures are
combined in a way that is not intrinsically causal. In contrast, the SC approach leads to a model that is
defined over a causal graph and that therefore supports inferences about interventions and counter-
factuals. Our experiments suggest that humans combine object and feature structures in a way that
supports subsequent causal inferences, and we therefore conclude that the SC approach accounts
for human inferences better than the DC approach.

Although previous models of inductive reasoning do not incorporate both feature structures and
object structures, several researchers have explored whether these forms of knowledge are combined.
Experiment 3 of Rehder (2006) suggests that causal relationships between features dominate similar-
ity relationships between objects, and that similarity relationships are used only when causal informa-
tion is unavailable. Other researchers have also considered cases where causal inferences and
inferences based on surface similarity lead to opposite conclusions (Lassaline, 1996; Wu & Gentner,
1998; Hayes & Thompson, 2007; Lee & Holyoak, 2008; Holyoak et al., 2010), and the consistent finding
is that causal inferences dominate similarity-based inferences. Causal relationships may indeed be pri-
mary, but the vast majority of real-world problems involve cases where causal relationships between
features are known only partially. In cases of this kind similarity relationships between objects pro-
vide a guide to shared causal structure, and inferences should therefore exploit both causal relation-
ships between features and similarity relationships between objects. Hadjichristidis, Sloman,
Stevenson, and Over (2004) provide some evidence for this view, and show that inductive inferences
are influenced both by the centrality of a feature in a causal structure and by similarity relationships
between objects. Although we do not focus on feature centrality, our model can be viewed as a com-
putational treatment of some key intuitions behind the work of Hadjichristidis et al. (2004). In partic-
ular, the model captures the idea that the taxonomic relationships between two objects can help to
predict whether the two are similar with respect to unobserved causal variables.

We begin in the next section by introducing a general probabilistic framework for reasoning about
partially observed object-feature matrices. The three combination models (OC, DC, and SC) all rely on
prior distributions over matrices, and we show how priors of this kind can capture relationships be-
tween objects and relationships between features. The remainder of the paper describes three exper-
iments that we conducted to evaluate our models. The results suggest that people are able to reason
simultaneously about relationships between objects and relationships between features, and to make
causal inferences that draw on both kinds of relationships. We demonstrate that the SC model ac-
counts better for this ability than the OC and DC models, and that all three combination models per-
form better than alternatives that rely on a feature structure or object structure in isolation.

2. Bayesian generalization

Our account of inductive generalization is founded on Bayesian inference. Any Bayesian approach
relies on a hypothesis space, a prior distribution that captures the background knowledge relevant to a
given problem, and a general purpose inference engine. This section focuses on the inference engine,
and the following sections describe how the prior distribution can capture knowledge about objects
and knowledge about features.

Suppose that we are interested in a certain set of objects and a certain set of features. Let M be a
complete object-feature matrix—a matrix that accurately specifies whether each object has each of the
features. Fig. 3 shows the sixteen possible object-feature matrices for a problem involving two objects
(01 and 0,) and two binary features (f; and f,). Suppose, for example, that 0, and o, are two cousins,
and that the features indicate whether the cousins are obese (f;) and whether they have diabetes (f5).
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(a) ht Hypotheses and prior distribution Prediction
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Fig. 3. Bayesian generalization. (a) If there are two objects and two features, there are 16 possible binary matrices M. The figure
shows one possible prior distribution P(M) over these matrices. The prediction matrix on the right shows predictions about
individual cells in the matrix computed by summing over the space of hypotheses. (b) Suppose that we observe the information
shown in M,,s: we learn that o, has f;. Eight of the matrices are no longer possible and are shown in gray. The posterior
distribution P(M|M,ys) is computed by reweighting the prior distribution P(M) on the eight matrices that remain. Relative to the
prediction in (a), the prediction matrix now indicates that o, is more likely to have f, and that o, is more likely to have f;.

It seems clear that the sixteen matrices M in Fig. 3 are not equally probable a priori. For example, the
case where both cousins have diabetes but only o0; is obese seems less probable than the case where
both have diabetes and both are obese. Assume for now that the prior probability P(M) of each matrix
is known. The prior in Fig. 3 captures the idea that f; is probabilistically caused by f;, and therefore
tends to be present if f; is present. The specific probabilities shown are consistent with a causal model
which indicates that obesity has a base rate of 0.3 and causes diabetes with probability 0.15.

Suppose that we observe M,;s, a version of the true matrix M with many missing entries. In Fig. 3b,
M,ps indicates that the first cousin is obese. Even though M, is incomplete we can use it to make
inferences about all of the entries in M. For example, learning that the first cousin is obese should
make us more likely to believe that the first cousin has diabetes, and that the second cousin is obese.
We propose that inferences of this kind are based on probabilistic reasoning. These inferences can be
modeled using the posterior distribution P(M|M,s), which captures expectations about M after observ-
ing M,,s. Using Bayes’ rule, we rewrite this distribution as

P(M[Mops) o< P(Mops|M)P(M). (1)

The likelihood term P(M,s|M) will depend on how the entries in M,,s were generated. Different for-
mulations of this term can capture, for instance, whether the observations in M, are corrupted by
noise, and whether a systematic method is used to select the occupied entries in M,,s. We will assume
throughout that M, is created by randomly choosing some entries in M then revealing their true val-
ues. It follows that

1, if M, is consistent with M
0, otherwise

P(Mas M) o { @
where M, is consistent with M if every entry that appears in M,,s matches the corresponding entry in M.

Combining Eq. (2) with Eq. (1) we see that

P(M), if Mgps is consistent with M
0, otherwise

P(M|M,ps) o { (3)
where the prior P(M) captures our prior expectations about matrix M. Intuitively, Eq. (3) states that
any matrix M which is incompatible with the observations in M,,; has zero posterior probability,
and that the posterior distribution over the candidates that remain is computed by reweighting the
prior P(M) (Fig. 3).
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The posterior distribution in Eq. (3) can be used to make predictions about individual entries in ma-
trix M. Suppose, for example, that we are primarily interested in entry My, or the entry that indicates
whether object i has feature j. The probability that this entry equals 1 is equal to the combined pos-
terior probability of all matrices with a 1 in position (i,j):

P(Mj = 1|Mops) = Y P(M|Mops) (4)
M:M;=1
where the sum ranges over all candidate matrices M with a 1 in position (i,j). For example, the predic-
tion matrix in Fig. 3 indicates that P(M;5 = 1|M,s) = 0.08 + 0.002 + 0.05 + 0.03 =~ 0.16.

The Bayesian computations specified by Eqgs. (3) and (4) are straightforward applications of statis-
tical inference. Statistical inference is a general-purpose approach that can be applied across many dif-
ferent settings, and has previously been used to develop psychological accounts of property induction
(Heit, 1998; Kemp & Tenenbaum, 2009), stimulus generalization (Shepard, 1987; Tenenbaum &
Griffiths, 2001), word learning (Xu & Tenenbaum, 2007), categorization (Anderson, 1991; Sanborn,
Griffiths, & Navarro, 2010), identification (Kemp, Chang, & Lombardi, 2010) and causal learning
(Anderson, 1990; Griffiths & Tenenbaum, 2005). These different applications may address very differ-
ent phenomena, but all of them use statistical inference to explain how prior knowledge and observed
data combine to produce inductive inferences.

Even though the Bayesian approach emphasizes domain-general statistical inference, it recognizes
that differences between inductive problems are critical. The prior distribution plays a fundamental
role in any Bayesian model, and different prior distributions can capture the different kinds of knowl-
edge that are relevant to different inductive problems. The next sections focus on the prior distribu-
tion P(M) that plays a role in Eq. (3). Formalizing this prior will require us to think carefully about the
knowledge that guides generalization.

3. Knowledge structures

A reasoner may know about relationships between objects, relationships between features, and
relationships between objects and features, and each kind of knowledge is useful for making infer-
ences about the missing entries in an object-feature matrix. The prior P(M) can capture all three kinds
of knowledge. For example, suppose that M is a matrix that specifies the features of a set of pets. A
reasoner might know that his pet mouse and his pet rat are similar (a relationship between objects),
and might assign low prior probability to matrices where his mouse and rat have many different fea-
tures. A reasoner might know that having sharp teeth and gnawing wood are linked (a relationship
between features), and might assign low prior probability to matrices where many animals gnaw
wood but do not have sharp teeth. Finally, the reasoner might know that his pet squirrel gnaws wood
(a relationship between an object and a feature) and might assign low prior probability to any matrix
that violates this condition.

We will work towards a prior distribution that simultaneously captures relationships between fea-
tures and relationships between objects. Let F be a structure that captures relationships between fea-
tures. For instance, F might be a causal model which specifies a causal relationship between having
sharp teeth and gnawing wood. Let O be a structure that captures relationships between objects.
For instance, O might be a model of similarity which indicates that mice and rats are similar. The next
sections describe priors P(M|F) and P(M|O) that rely on a single structure, and we then consider priors
P(MJF,0) that take both structures into account.

3.1. Feature structures

Inferences about partially-observed object-feature matrices can draw on different kinds of relation-
ships between features. Some of these relationships may capture non-causal correlations—for exam-
ple, an appliance which is large and is found within the home is likely to be white. Here, however, we
focus on causal relationships—for example, an appliance with an engine is likely to be noisy.

Building on previous work in psychology, artificial intelligence and statistics, we will formalize
causal knowledge using graphical models, also known as Bayesian networks (Pearl, 2000). Bayesian
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networks can capture probabilistic relationships between variables—for example, the network in
Fig. 4a captures a case where feature f; (e.g. obesity) probabilistically causes feature f, (e.g. diabetes).
Note that f, is present 16% of the time when f; is present, but only 1% of the time when f; is absent.
Most psychological applications of Bayesian networks have focused on probabilistic causal relation-
ships, but we will work with models that capture deterministic causal relationships. For example,
the probabilistic relationship between obesity and diabetes may be described more accurately as a
deterministic relationship that depends on one or more genetic and environmental factors. Fig. 4b
suggests that the probabilistic relationship between f; and f; in Fig. 4a can be reformulated as a deter-
ministic relationship that depends on variables b, and t. Variable b, indicates whether some back-
ground cause of f, is active, and variable t indicates whether or not the mechanism of causal
transmission between f; and f5 is active. For example, suppose that fat cells produce a hormone that
acts together with a special enzyme to cause diabetes. In this case the transmission variable t might
indicate whether or not the special enzyme is present in a given individual. The distributions in Fig. 4b
show that variables f; and f, are both deterministic functions of their parents in the graph. For exam-
ple, f5 is true only if background cause b, is present, or if f; is present and the link between f; and f5 is
active (i.e. both f; and t are true). Note that the distributions in Fig. 4b induce exactly the same distri-
bution P(f>|f;) that is captured by the model in Fig. 4a.

Both models in Fig. 4 are specified by defining probability distributions over graph structures. The
edges in the graph indicate patterns of causal dependence, and each model specifies a conditional
probability distribution on the value of each variable given the values of its parents in the graph. To-
gether, these conditional probability distributions define a joint distribution over the values of all vari-
ables. For example, the joint distribution for structure S in Fig. 4a is

P(fi,£21S) = P(fi)P(f2lf1) (5)
This joint distribution can be written more generally as
P(v1,...,valS) = [ [ P(vj|m(v))) (6)
J

where 7(#;) indicates the parents of variable v, or the set of all variables in S that send an edge to ;.
Variables with no parents will be referred to as root variables, and P(;|n(v;)) is equivalent to the dis-
tribution P(#;) for any root variable ;.

P(fi=0)P =1 1 2 = 1 2 = 1
(a) B OPH=D () D fu| PU2=0l) P2 = 11f1)
1 0.84 0.16
P(t=0) P(t=1
(b) (0.85) (0.15) bg J;I é P(fzz(ilbz.,fl,t) P(fz:gbz,fl.,t)
(1) 0 0 f 1 0
010 1 0
011 0 1
b | P(fi=0lb) P(fi=1[b) oS X ]
? g) ? 110 0 1
11 1 0 1

Plbi=0)P(by =1)  P(by = 0) P(by = 1
B OPESY (rge ¥ Py V

Fig. 4. Causal models. (a) A model that captures a probabilistic relationship between features f; and f,. (b) A functional causal
model that induces the same joint distribution over f; and f,. Variables b; and b, indicate whether background causes for f; and
f> are active, and variable t indicates whether the mechanism of causal transmission between f; and f; is active. All of the root
variables (b4, b, and t) are independent, and the double lines around f; and f; indicate that these variables are deterministically
specified once the root variables are fixed.
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The models we consider rely on the factorization in Eq. (6), but the conditional probability distri-
butions for all variables other than the root variables must be deterministic. Models of this kind are
often described as functional causal models (Pearl, 2000). Note, for example, that the functional model
in Fig. 4b specifies distributions P(b;), P(b;) and P(t) on the three root variables, but that the distribu-
tions P(f1|b1) and P(f3|f1,t,b,) are deterministic. At first it may seem that working with deterministic
causal relationships is a severe restriction, but any network N that incorporates probabilistic relation-
ships can be replaced by a functional model that is equivalent in the sense that it captures the same
distribution over the variables in N. For example, Fig. 4a and b both capture the same distribution over
variables f; and f>.

For our purposes, the primary reason to work with functional causal models is that they provide a
natural way to combine causal relationships between features with relationships between objects. For
example, the structure combination model developed in a later section is based on the intuition that
similar objects (e.g. identical twins) ought to have similar settings for the hidden variables (e.g. genes)
that influence observable features (e.g. health outcomes). There are, however, at least two additional
reasons why functional models may be appealing. First, functional models are consistent with the pro-
posal that people are causal determinists (Pearl, 2000; Goldvarg & Johnson-Laird, 2001; Luhmann &
Ahn, 2005b; Frosch & Johnson-Laird, 2011), and with empirical results which suggest that people often
invoke hidden variables to account for causal relationships that may appear to be probabilistic on the
surface (Schulz & Sommerville, 2006). Second, Pearl (2000) has shown that functional causal models
improve on networks that incorporate probabilistic relationships by providing a natural account of
certain kinds of counterfactual inferences. Psychologists continue to debate whether humans are cau-
sal determinists (Cheng & Novick, 2005; Frosch & Johnson-Laird, 2011), but our work fits most natu-
rally with the determinist position.

Although many applications of causal models focus on a single object at a time, a causal model F
can be used to make predictions about an entire object-feature matrix M. Suppose that the feature val-
ues for object i are collected into a vector 0;. The causal model F specifies a distribution P(0;|F) on these
vectors using Eq. (6), and these distributions can be combined to produce a prior distribution on matri-
ces M:

P(MIF) = ] [ P(oilF). (7)

Eq. (7) assumes that the object vectors {0;} (i.e. the rows of the matrix) are conditionally independent
given the feature model F (Fig. 5a). Many models of causal reasoning make this assumption of condi-
tional independence (Rehder & Burnett, 2005), and we refer to it as the assumption of object
independence.

Even though previous causal models are rarely described as models for reasoning about entire
object-feature matrices, most can be viewed as approaches that combine the Bayesian framework

(a) Object independence  (b) Feature independence

D Dae® & @® -

(o) | 1| |o| |1
() | 1| |0 |~
©3) [ o ||1]]>
) [o||1]]>

. o o
—_
—_

Fig. 5. Independence assumptions made by models of generalization. (a) Models of causal reasoning generally assume that the
rows of an object-feature matrix are conditionally independent given a structure over the features. These models are often used
to account for across-feature generalization. (b) Models of similarity-based reasoning generally assume that the columns of the
matrix are conditionally independent given a structure over the objects. These models are often used to account for across-
object generalization.
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of Eq. (3) with a prior (Eq. (7)) defined using a feature model. Approaches of this kind have been used
to address problems including causal attribution, causal learning, and property induction (Waldmann
et al., 1995; Rehder, 2003; Danks, 2003; Gopnik et al., 2004; Sloman, 2005). These approaches, how-
ever, suffer from a well-known and serious limitation (Luhmann & Ahn, 2005b; Luhmann & Ahn,
2005a). In most cases of interest, the feature model F will not capture all of the causally relevant vari-
ables, and hidden variables will ensure that the assumption of object independence is violated. Con-
sider again the feature model F in Fig. 4a which specifies that obesity causes diabetes with probability
0.15. Recall our earlier example where Tim, Tom and Zach are obese, where Tim and Tom are identical
twins, and where Tim has diabetes. The assumption of object independence implies that Tom and Zach
are equally likely to suffer from diabetes, a conclusion that seems unsatisfactory. The assumption is
false because of variables that are unknown but causally relevant—variables capturing unknown bio-
logical and environmental factors that mediate the relationship between obesity and diabetes.

One possible response to this problem is to work with a functional model that captures one or more
unobserved variables. Consider, for example, the functional model in Fig. 4b where transmission vari-
able t indicates the presence of a certain gene that determines whether obesity causes diabetes. If we
were confident that Tom carried the gene but were uncertain about whether Zach was a carrier, we
might predict that Tom should be more likely than Zach to have diabetes. Note, however, that the gene
variable is unobserved. In order to conclude that Tom carries the gene, we need to use the observation
that Tim has diabetes, which suggests that Tim carries the gene, which in turn suggests that Tom also
carries the gene. The final step depends critically on the knowledge that Tim and Tom are similar—
knowledge that is violated by the assumption of object independence. In other words, even if we use
a functional feature model F, we need to find some way to take relationships between objects into
account.

We will relax the assumption of object independence by defining a prior distribution P(M) that
combines the feature structure F with a structure O that captures relationships between objects. Ob-
ject structure O, for example, can capture the fact that Tim and Tom are identical twins, and are similar
in many respects. First, however, we describe a prior distribution P(M) that depends only on relation-
ships between objects.

3.2. Object structures

We noted earlier that inferences may draw on different kinds of relationships between features,
and knowledge about relationships between objects can be just as rich. The case of the three obese
men shows that genetic relationships can matter, but many other relationships can guide inferences
about unobserved features. Social relationships are relevant: for example, John is more likely to be ob-
ese if many of his friends are obese (Christakis & Fowler, 2007). Joint category membership may be
relevant—if Rex and Spot are both dogs, then they are likely to have certain features in common,
and if Rex and Rover are both Labradors, then even more inferences are licensed. Taxonomic relation-
ships are often important when reasoning about animals, but other kinds of relationships including
ecological relationships and predator-prey relationships may also play a role (Shafto & Coley, 2003).
Finally, similarity can be treated as a relationship between objects, and there may be many kinds of
similarity that guide inductive inferences (Medin, Goldstone, & Gentner, 1993).

Here we focus on a setting where the relationships of interest are captured by a single taxonomic
tree. We previously described how Bayesian networks can capture relationships between features, and
the same approach can capture relationships between objects.! Suppose that we are given a binary tree
that captures taxonomic relationships among a set of m objects. The objects o, through o, lie at the
leaves of the tree, and we will use labels 0,,+; through o0,,, 1 for the internal nodes of the tree. Fig. 6a
shows a simple case where the leaves of the tree represent four animals: a mouse, a rat, a squirrel

1 Although we focus in this paper on taxonomic relationships between objects, a taxonomic tree can also be used to capture
inferences that rely on taxonomic relationships between categories (Tenenbaum, Kemp, & Shafto, 2007). One possible approach is
to use a tree where the leaves represent categories. The more general approach is to use a tree where the leaves represent objects
and the internal nodes represent categories—the resulting representation can be used to make inferences about both objects and
categories, and may be useful for modeling tasks like those described by Murphy and Ross (2010).



44 C. Kemp et al./Cognitive Psychology 64 (2012) 35-73

(a) (b) oo o1
Plu=0) Plu=1) 02 02
1—X A
03 03
O/l 0,,,1
P(v=0|u) P(v=1|u)
1—A+Ae™ A= et A feature vector A feature vector
T-A—(1=XNet X4(1=Ne with high probability with low probability

Fig. 6. Capturing taxonomic relationships between objects. (a) A tree structured graphical model. The conditional probability
distribution for node v is shown, and all other conditional probability distributions are defined in the same way. (b) Prior
probabilities assigned by the model in (a). Black nodes take value 1, and white nodes take value 0.

and a sheep. The tree captures taxonomic similarity in the sense that objects nearby in the tree (i.e. near-
by leaf nodes) are expected to have similar feature values. Let each feature be a vector (01,...,02m-1) that
assigns a value to each node in the tree, including the internal nodes. We will define a probability dis-
tribution over feature vectors which captures the idea that adjacent nodes tend to have the same feature
value. Fig. 6b shows two possible feature vectors. The first includes only one case where adjacent nodes
have different values—object o4 takes value 1 but the root node takes value 0. The second feature vector
includes two cases where adjacent nodes take different feature values, and will therefore be assigned
lower probability than the first feature vector.

We formalize these intuitions by turning the tree structure into a Bayesian network O. Suppose that
Jj is the base rate of feature f;: in other words, the expected proportion of objects that have feature f;.
The Bayesian network O takes the base rate /; as a parameter, and specifies a distribution P(f;|0, 4;) over
possible extensions of feature f;. Like all Bayesian networks, O includes a set of conditional probability
distributions that specify how the value at each node depends on the values of its parents. The condi-
tional probability distributions for O capture two basic intuitions: nodes tend to inherit the same values
as their parents, but exceptions are possible, and become more likely when a child node is separated by
along branch from its parent. The following conditional distribution satisfies all of these requirements:

i+ (1 =2)e!, if m(o;) has value 1
P(o; = 1|m(0;)) = ¢ A — e, if 7(0;) has value 0 (8)
A, if o; is the root node

where [ is the length of the branch joining object o; to its parent. The last case in Eq. (8) specifies that
the probability distribution at the root node (0,,,.1) is determined directly by the base rate A.

The conditional probability distributions in Eq. (8) emerge from some simple assumptions about
how features are generated. Suppose that feature f; takes a value at every point along every branch
in the tree, not just at the nodes. Imagine feature f; spreading over the tree from root to leaves: the
feature starts out at the root node with some value, and may switch its value (or mutate) at any point
along any branch. Whenever a branch splits, both lower branches inherit the value of the feature at the
point immediately before the split, and the feature now spreads independently along the two lower
branches. Eq. (8) follows from the assumption that the feature value at any point in the tree depends
only on the base rate / and the feature value at the immediately preceding point.? Eq. (8) has been
previously used by computational biologists to study the evolution of genetic features (Huelsenbeck &
Ronquist, 2001), and has also been proposed as a psychological model of property induction (Tenenbaum
et al., 2007). Other methods for defining probability distributions over trees are possible (Kemp & Ten-

2 Technically speaking, transitions between feature values are modeled using a continuous-time Markov chain with
infinitesimal matrix:

—A A

Q=l1- —(1-2)
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enbaum, 2009), and any model which captures the idea that nearby objects in the tree tend to have sim-
ilar features is likely to work for our purposes.

The branch lengths in the tree help to capture the taxonomic relationships between objects. In
Fig. 6a, for example, the distance between o; and o3 in the tree is twice the distance between o,
and o,, indicating that o is more similar to 0, than os. For all applications we assume that the topology
of the tree and the relative magnitudes of the branch lengths are fixed, but that there is a single free
parameter which corresponds to the total path length of the tree. If the total path length is very small
then all of the objects are effectively very close to each other, and the prior distribution captured by
network O will assign a prior probability of 1 — 1 to the feature where all objects take value 0 and a
prior of 1 to the feature where all objects take value 1. If the total path length is very large then all
of the objects are effectively very distant from each other, and the prior distribution captured by O will
be similar to a distribution where the feature values for each object are independently generated by
tossing a weighted coin with bias A.

We have now defined a Bayes net O that specifies a distribution P(fj|0, /;) over single features. As
before, this distribution can be used to define a prior distribution on object-feature matrices:

P(M|0,4) = [ [ P(£;10. %) )

where 4 is a vector that specifies base rates for all features in the matrix. Eq. (9) follows from the
assumption of feature independence: the assumption that the features (ie. the columns of the matrix)
are conditionally independent given the object structure O (Fig. 5b).

The assumption of feature independence is relatively common in the psychological literature. Kemp
and Tenenbaum (2009) describe four models of property induction that rely on this assumption, and
Anderson’s rational model of categorization is based on a very similar assumption. There are some cases
of interest where this simplifying assumption appears to be justified. Consider, for example, inferences
about blank features: given that whales have feature F, which other animals are likely to share this fea-
ture (Rips, 1975; Osherson et al., 1990)? Since little is known about feature F, it cannot be directly linked
with any single known feature, and inferences about tasks of this kind tend to conform to taxonomic
similarity. Participants might conclude, for example, that dolphins are more likely to have feature F than
mice, since whales are more similar to dolphins than mice. A model that uses Eq. (9) as its prior will ac-
count for results of this kind if the structure O captures taxonomic relationships between animals.

Although the assumption of feature independence is occasionally appropriate, models that make
this assumption are limited in a fundamental way. A core finding from empirical work on property
induction is that different features lead to different patterns of inductive inference (Gelman & Mark-
man, 1986; Macario, 1991; Heit & Rubinstein, 1994; Shafto & Coley, 2003). Suppose, for example, that
whales have a given feature, and that you need to decide whether bears or tuna are more likely to
share the feature (Heit & Rubinstein, 1994). If the feature is anatomical (e.g. “has a liver with two
chambers”), the anatomical match (bear) seems like the better response, but behavioral features
(e.g. “travels in a zig-zag trajectory”) support the behavioral match (tuna) instead. The assumption
of feature independence cannot account for this result. Any model that makes this assumption pre-
dicts that two novel features will be treated in exactly the same way, since both are conditionally
independent of all other features given a representation (O) of the relationships between animals.

The assumption of feature independence is unwarranted in part because people know about causal
relationships between features. People know, for example, that “traveling in a zig-zag trajectory” is
likely to be related to other features (like swimming and living in the water) that are shared by tuna
and whales but not by bears and whales. Cases of this kind can be handled by combining causal
relationships between features with taxonomic relationships between objects, and the next section
considers how this combination can be achieved.

4. Combining knowledge structures

We have now described two models that can be used for reasoning about partially observed
object-feature matrices. The feature model relies on a graph structure that captures causal relation-



46 C. Kemp et al./Cognitive Psychology 64 (2012) 35-73

ships between features, and the object model relies on a graph structure that captures taxonomic rela-
tionships between objects. This section describes three approaches that can be used to combine these
models. The approaches are summarized in Fig. 7, and the critical difference between the three is the
level at which the object and feature models are combined. The output combination approach com-
bines the outputs generated by the two models, the distribution combination approach combines the
probability distributions captured by the two models, and the structure combination model combines
the graph structures over which the two models are defined. All three approaches seem plausible, but
we will end up concluding that the structure combination approach provides the best account of our
data.

4.1. The output combination model

Suppose first that the feature structure F and the object structure O are stored and used by two dis-
tinct reasoning modules. If these modules are informationally encapsulated (Fodor, 1983) there can be
no direct interactions between these two structures. The predictions consistent with each structure,
however, may be combined by some system that receives input from both modules. This approach
to knowledge integration is shown schematically in Fig. 2b, and we refer to it as the output combination
model (or OC model for short). Fig. 7a shows how the OC approach can be applied given probabilistic
models defined over structures F and O. The two models induce priors Po(M) (Eq. (9)) and P{M) (Eq. (7))
over object-feature matrices M, and these two priors can be used to generate outputs in response to any
given query. The overall or combined output is generated by combining these two outputs.

The OC model has been previously discussed in the literature on information integration (Ander-
son, 1981), which explores how multiple sources of information can be combined. The most typical
approach in this literature is to combine multiple predictors using a simple mathematical function
such as a sum (Lombardi & Sartori, 2007), a product (Medin & Schaffer, 1978; Massaro & Friedman,
1990; Ernst & Banks, 2002), or a weighted average (Anderson, 1981). We implemented all of these pos-
sibilities and the OC model evaluated in this paper uses a weighted average, which turned out to be
the best performing combination function.

The OC approach is very general and can be used to combine the predictions of any set of models,
including some that are probabilistic and some that are not. In addition to the psychological literature

(a) Output combination  (b) Distribution combination  (c) Structure combination

o F o F o) F
C
Po(M) Pr(M) Po(M) Pr(M)
Po(M) Pe(M)
output o output
output output ¢ output ¢

Fig. 7. Three methods for combining an object structure O and a feature structure F. (a) The object and feature structures both
induce prior distributions over object-feature matrices M. The output combination approach uses priors Po(M) and P{M) to
generate outputs consistent with each structure in isolation, then combines these outputs to generate outputc, the overall
combined output. (b) The distribution combination approach combines the priors Po(M) and P{M) to generate a combined prior
distribution Po(M) over object-feature matrices. This prior is used directly to generate the overall output. (c) The structure
combination model combines the object and feature structures to create a combined structure C over which a prior distribution
PAM) is defined.
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on information integration, the approach has also been explored in several other fields, including sta-
tistics, machine learning, and artificial intelligence. For example, the weighted average model evalu-
ated in this paper will be familiar to machine learning researchers as a “mixture of experts” approach
(Jacobs, Jordan, Nowlan, & Hinton, 1991).

From a normative perspective, one limitation of the OC model is that it sometimes fails to draw out
the full implications of the available information. For example, suppose that you know that obesity
causes diabetes, that Tim and Tom are identical twins, and that Tim is obese. The OC model can infer
that Tim is likely to have diabetes and that Tom is likely to be obese, since these conclusions follow
from the feature and object models respectively. The OC model, however, cannot infer that Tom is
likely to have diabetes, since this conclusion follows from neither component model in isolation. More
generally, the OC model cannot make informed inferences about arguments where the objects and
features mentioned in the conclusion do not appear among the premises. The argument in Fig. 1c is
one example: the OC model can infer that the rat is likely to have gene X, and that the mouse is likely
to have enzyme Y, but cannot infer that the rat is likely to have enzyme Y. This potential weakness of
the OC model can be addressed by combining the feature and object models directly instead of com-
bining their outputs. This approach is shown schematically in Fig. 2¢, and the following sections de-
scribe two instances of this approach.

4.2. The distribution combination model

If the two component models are both probabilistic models, the two can be combined by combin-
ing the prior distributions that they capture. Fig. 7b summarizes this approach and shows that the pri-
ors Po(M) and PH{ M) are combined to create a prior P{M) that is then used to compute the final output.
We refer to this approach as the distribution combination model, or the DC model for short.

Just as there are several ways to combine the outputs of two modules, the prior distributions in-
duced by two models could be combined using a weighted average or a product. The DC model eval-
uated in this paper uses a prior that is the product of the priors for the two component models:

P(M|F,0) o [ [ P(oi[F) ] [ P(£10. 4). (10)
i j

where the base rate 4; for feature f; is set by the marginal probability of f; according to F. This model
will be familiar to machine learning researchers as a “product of experts” model (Hinton, 2000). A DC
model that relies on a weighted average of priors is also worth considering, but this model turns out to
be equivalent to an OC model that relies on a weighted average. In general, however, a DC model will
not be equivalent to an OC model—for example, a DC model that relies on a product of priors does not
generate the same predictions as an OC model that relies on a product. As a result, the DC approach
should be distinguished from the OC approach.

The DC prior in Eq. (10) assigns high probability only to matrices that receive relatively high prior
probability according to both the feature model (Eq. (7)) and the object model (Eq. (9)). For example, in
the obesity and diabetes example, the matrices that receive high prior probability are those where Tim
and Tom have the same feature values, and where individuals with diabetes are obese. This prior can
then be used to generate predictions about unobserved entries in an object-feature matrix, as summa-
rized by Fig. 3. For example, the model can handle the argument in Fig. 1c that proved challenging for
the OC model. Given that the mouse has gene X, the DC model can predict that the rat is likely to have
enzyme Y, an inference that relies on both the similarity between the mouse and the rat and the causal
relationship between gene X and enzyme Y.

Although the DC model is capable of making sensible qualitative predictions about all of the gen-
eralization problems described so far, it may struggle to make accurate quantitative predictions. From
a normative perspective, one limitation of the approach is that it assigns too much weight to feature
base rates. Consider a very simple setting where there is one object and one feature with a base rate of
0.9. Matrix M is either 1 or 0, and the probability that M = 0 should intuitively be 0.1. The DC model,
however, generates a prior distribution where P(M = 0) ~ .01. Since the prior is generated by multiply-
ing a distribution over rows with a distribution over columns, the model effectively uses the base rate
twice, which means that probabilities of rare events (e.g. M =0) end up much smaller than they
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should. Our experiments do not address this limitation directly, but it may help to explain why the DC
model achieves relatively low quantitative fits in some cases.

Moving from simple generalization problems to problems involving causal inferences about inter-
ventions and counterfactuals may raise some more fundamental challenges for the DC model. One
common approach to causal reasoning makes use of a directed graph that captures causal relation-
ships between variables, and manipulates this graph in order to reason about interventions and coun-
terfactuals. The two components of the DC model are defined over directed graphs, but there is no
overall graph structure that captures the way in which these two component graphs combine. It
may turn out that manipulating each component graph separately then combining the two according
to the DC approach is enough to account for human inferences about interventions and counterfactu-
als. Our third experiment explores this possibility, and to preview the results we find a qualitative
mismatch between human inferences and the predictions of the DC approach.

4.3. The structure combination model

The DC model combines an object and a feature structure by combining the distributions induced
by these structures, but the structure combination approach (SC approach for short) combines these
structures directly. Fig. 2 shows that the combined structure C induces a prior distribution PA(M),
which can then be used to make inferences about generalization problems.

To explain how the two structures are combined, we use an example where feature structure F is
the functional model in Fig. 4b and O is a tree defined over three objects (Fig. 8a). Recall that structure
F indicates that obesity (f;) causes diabetes (f>), and suppose that structure O indicates that Tim and
Tom (0, and o0,) are more similar to each other than either one is to Zach (03). Note that the relation-
ship between obesity (f;) and diabetes (f>) in Fig. 4b is mediated by a transmission variable t, which
summarizes the influence of genetic factors that are unknown but relevant.

Even though variable t may capture one or more unknown factors, we do know something about
this variable—we expect that the values it takes across the three objects will tend to respect the sim-
ilarity relationships captured by O. For example, if the transmission variable t takes value 1 for just
two of the three individuals, we might expect that these two individuals are more likely to be Tim
and Tom (a similar pair) than Tim and Zach (a dissimilar pair). The other root variables should likewise
respect the similarity relationships captured by O, and we therefore assume that all root variables in F
are generated independently over O:

P(MIF,0) = P(b1|0, i, )P(b2|0, 7, )P(t|0, 7:)P(f |b1)P(f, | b2 . f 1, ) (11)

@ @ @ Feature structure F

@ OO
Object \ Structure combination
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Fig. 8. The structure combination model is created by combining an object structure O with a feature structure F. The feature
structure F shown here is the same as the structure in Fig. 4b, although the spatial layout of the variables has been altered. The
SC model assumes that the root variables in F (here by, b, and t) are independently generated over O, and can be represented as a
causal graphical model. The arrows on the edges of the graphical model are inherited from the component structures, but all
except three have been suppressed for visual clarity. Note, for example, that all edges inherited from the feature structure F are
oriented from left to right.
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where each matrix M now includes five columns for variables by, by, t, f; and f,, and the base rates
Zb,, by, and Z; are specified by the feature structure F. The last two terms on the right-hand side of
Eq. (11) indicate that variables f; and f, depend on the root variables but not the object structure O.
There is no need to generate f; and f, over the object structure, since these variables are determinis-
tically specified once the root variables have been fixed.

The prior distribution in Eq. (11) can be represented as a causal Bayesian network defined over a
graph product of feature structure F and object structure O. Fig. 8 shows the graph for this network.
Note that we have introduced a copy of O for each root variable in F, and that these root variables
are connected to the deterministic variables f; and f, as specified by F. The graph product in Fig. 8
inherits its conditional probability distributions from the feature structure F and the object structure
0. As a result, the Bayesian network corresponds exactly to the prior distribution in Eq. (11).

The SC model in Fig. 8 is a network where the six variables of primary interest (i.e. the six variables
representing values of f; and f; for the three objects) are deterministically specified given their parent
variables. The model therefore qualifies as a functional causal model and offers all of the advantages of
these models. For example, the SC model can be used in the standard way to reason about interven-
tions and counterfactuals. Since the SC model can be represented as a Bayesian network, model pre-
dictions can be computed efficiently by standard algorithms for inference in Bayesian networks. All of
the results in this paper were computed using the Bayes Net toolbox (Murphy, 2001). Fig. 8 shows how
our approach can be used to integrate one specific feature structure F and one specific object structure
0, but the same approach can be used when F is any functional causal model and O is any tree struc-
ture. We will illustrate this flexibility by considering several different feature structures in our
experiments.

Although the SC model is motivated by problems where object structures and feature structures
should be combined, previous studies have documented cases where multiple structures are not com-
bined. For example, Rehder (2006) describes some cases where causal relationships between features
appear to dominate similarity relationships between objects, and the two are not combined. Any ac-
count of knowledge integration should therefore attempt to distinguish between cases where multiple
structures are and are not combined. Since this paper focuses on taxonomic relationships between ob-
jects and causal relationships between features, we need some way to predict when taxonomic rela-
tionships should be taken into account. The SC model motivates the following taxonomic influence
principle:

Taxonomic relationships should be taken into account if and only if these relationships provide
information about the distribution of variables that are unobserved but causally relevant to some
feature of interest.

The taxonomic influence principle identifies two distinct cases where taxonomic relationships
should play no role. The first case includes problems where taxonomic relationships are simply irrel-
evant to the features of interest. Suppose, for example, that an eccentric businessman is interested in
buying animals with names that end in a consonant. In this case the assumptions of the SC model do
not apply, since the causal variables that influence the businessman’s decision do not respect the sim-
ilarity relationships between animals captured by a taxonomic tree. The second case includes prob-
lems where taxonomic relationships are relevant to the features of interest, but where there are no
unobserved root variables. In Fig. 4b, for example, there are three root variables (t, b; and b,), and
the SC model in Fig. 8 predicts that taxonomic relationships will not shape inferences once these three
variables are observed for each object. Although this second case is a legitimate theoretical possibility,
in real-world settings it is usually impossible to observe all of the causal root variables. We therefore
expect that the first case will cover most of the real-world settings where taxonomic relationships are
found to play no role in inductive reasoning.

4.4. Special cases of the structure combination model
Although this paper focuses on problems where object structures and feature structures must be

combined, the combination models just described can also make inferences about cases where only
one structure is relevant. We illustrate by explaining how our approach of choice—the SC model—sub-
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sumes previous probabilistic models that rely on either a feature structure or an object structure in
isolation.

Many previous authors have used Bayes nets to account for inductive reasoning, and any model
that corresponds to a Bayes net defined over features or a Bayes net defined over objects can be
viewed as a special case of the SC model. Accounts of causal reasoning (Glymour, 2001; Rehder,
2003; Gopnik et al., 2004; Griffiths & Tenenbaum, 2005) often rely on Bayes nets defined over features,
and the SC model reduces to a Bayes net of this kind when the object structure O indicates that all
objects are equally similar to each other. Suppose, for example, that object structure O is a tree where
all objects are directly linked to the root node and lie at the same distance from this node. In this case
the object structure plays no role and the SC model is identical to a model which assumes that objects
correspond to independent samples from a Bayes net defined over features. Several previous accounts
of across-object generalization rely on Bayes nets defined over objects (Shafto, Kemp, Bonawitz, Coley,
& Tenenbaum, 2008; Tenenbaum et al., 2007), and the SC model reduces to a Bayes net of this kind
when the feature structure F indicates that all features are independent. In this case the feature struc-
ture plays no role, and the SC model is identical to a model which assumes that features correspond to
independent samples from a Bayes net defined over objects.

Since the SC model subsumes most previous models that rely on Bayes nets, it accounts for the data
that have been presented in support of these models in exactly the same way as the original models.
The SC model should therefore be viewed not as a competitor to these previous models, but as an
extension of these models. Previous models suggest that Bayes nets can be used to capture both rela-
tionships between features and relationships between objects, and the key contribution of the SC
model is to demonstrate how these different kinds of knowledge can be combined.

5. Experiment 1: generalization across objects and features

Our working hypothesis is that people find it natural to combine relationships between features
and relationships between objects. Real-world examples like the case of the three obese men appear
to support our hypothesis, and we designed three experiments to test this hypothesis under controlled
laboratory conditions. All of our experiments used a set of four animals—a mouse, a rat, a squirrel and
a sheep. These animals were chosen to include pairs that are similar (e.g. mouse and rat) and pairs that
are not (mouse and sheep). A taxonomy that captures similarity relationships between these animals
is shown in Fig. 9a. A generalization task described in Appendix A confirmed that this tree matches
human judgments about the relationships between these four animals. We explored several different
feature structures and four examples are shown in Fig. 9b.

Our first two experiments explore whether people make inferences that simultaneously draw on
relationships between objects and relationships between features. The OC, DC and SC models all pre-
dict that object and feature structures are combined, and we compare these models with alternatives

(a) Object structure O (b) Feature structures F

mouse
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rat fi f2 f3 A 2
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Fig. 9. Object and feature structures used for Experiments 1 and 2. (a) An object structure O that captures taxonomic
relationships between the four animals in our experiments. (b) Feature structures F that summarize four kinds of relationships
between the observed features in our experiments. The thick gray edge between features f; and f, in the common effect model
indicates that these features are mutually exclusive. The undirected edge between f; and f, in the cluster structure indicates
that these features are known to co-occur, but that neither feature causes the other. Functional causal models consistent with
each structure are shown in Fig. B.20 of the appendix.
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that rely on a feature structure alone or an object structure alone. Our third and final experiment fo-
cuses on counterfactual interventions, and we explore whether and how people combine object and
feature structures in this setting.

Our first experiment considers a setting where participants are asked to make inferences about the
missing entries in an object-feature matrix. The matrix is sparsely observed: for example, participants
might be told only that the mouse has f;, then asked to fill in the remaining entries. We were inter-
ested to see whether their responses would be guided by the causal relationships between the fea-
tures, the taxonomic relationships among the four animals, or by both kinds of relationships.

5.1. Participants

16 MIT undergraduates participated in the experiment in exchange for pay. Participants were re-
cruited through newsgroup and bulletin board postings and had no personal connection with the
experimenters.

5.2. Materials

Participants read the following instructions:

“You are a biochemist and you study enzyme production in mammals. Each mammal produces
many enzymes, and different mammals can produce very different sets of enzymes. In your lab
today you have a mouse, a rat, a sheep and a squirrel. You will be running tests on each animal
to determine the presence of certain enzymes.”

The experiment had three within-participant conditions, each of which was associated with a dif-
ferent set of features. Each feature indicates the presence or absence of an enzyme. Pseudo-biological
names like “dexotase” were used in the experiment, but here we use labels such as f; and f>. The rela-
tionships between the observed features in each condition are summarized in Fig. 9b. In the chain con-
dition, participants were told that f; is known to be produced by several pathways, and that the most
common pathway begins with f;, which stimulates production of f,, which in turn leads to the produc-
tion of f3. In the common-effect condition, participants were told that f3 is known to be produced by
several pathways. One of the most common pathways involves f; and the other involves f>, although f;
and f, are rarely found in the same animal. In the cluster condition, participants were told about four
enzymes: f; and f, are complementary enzymes that work together in the same biochemical pathway,
and f3 and f; are complementary enzymes that work together in a different biochemical pathway.

To reinforce each causal structure, participants were shown 20 cards representing animals from
twenty different mammal species (names of the species were not supplied). The card for each animal
included a bar chart which showed whether or not that animal had tested positive for each enzyme in
the current condition. The cards were chosen to be representative of the distribution induced by a
functional model with known structure and known parameterization. The functional models and
the cards used for each condition are described in Appendix A. Even though each condition is based
on a functional causal model, note that the cards and all other experimental materials mention only
some of the variables in these models, and all of the information participants received was consistent
with the existence of probabilistic causal relationships between the observed variables. We chose not
to train participants on functional models for two reasons. First, real-world causal problems often in-
volve systems where many of the relevant variables are unknown, which means that causal relation-
ships between observed variables typically appear to be probabilistic. Second, previous psychological
studies typically focus on probabilistic relationships between observed variables, and we wanted to
maintain continuity with the large body of existing work in this area.

5.3. Procedure

The experiment began with a preliminary taxonomic task that was designed to probe background
knowledge about taxonomic relationships between the four animals in the study. Participants were
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told that scientists had recently identified four enzymes and were asked 12 questions of the following
form:

“You discover that the mouse produces enzyme Q84. How likely is it that the rat produces Q84?”

Responses were provided on a scale from O (very unlikely) to 100 (very likely).

Participants then moved on to the three within-participant conditions. In each condition, partici-
pants read a description of a given causal structure: chain, common-effect or clusters. As described
above, participants were given a set of 20 cards showing samples consistent with the causal structure.
After participants had studied the cards for as long as they liked, the cards were removed and partic-
ipants responded to a preliminary causal task including questions about unidentified mammals. One
group of questions asked about the base-rate of each feature:

“You learn about a new mammal. How likely is it that the mammal produces enzyme f;?
The remaining questions asked about relationships between features:

“You learn that a mammal produces enzyme f;. How likely is it that the same mammal also pro-
duces enzyme f,?

The questions in this preliminary task were intended to encourage participants to reflect on the
causal relationships between the enzymes.

In each condition, participants were told that they would be testing the four animals (mouse, rat,
sheep and squirrel) for each enzyme of interest. In the chain and common-effect conditions there were
12 tests in total (three for each animal), and in the clusters condition there were 16 tests in total. Each
condition included two tasks. In the chain condition, participants were told that the mouse had tested
positive for f; and were asked to predict the outcome of the 11 remaining tests. Participants were then
told in addition that the rat had tested negative for f,, and asked to predict the outcome of the 10
remaining tests. Note that this second task requires participants to integrate causal reasoning with
taxonomic reasoning: causal reasoning predicts that the mouse has f,, and taxonomic reasoning pre-
dicts that it does not. In the common-effect condition, participants were told that the mouse had
tested positive for f3, then told in addition that the rat had tested negative for f>. In the cluster condi-
tion, participants were told that the mouse had tested positive for f;, then told in addition that the rat
had tested negative for f;.

Responses to all questions were provided on a scale from O (very likely to test negative) to 100
(very likely to test positive). Participants made their responses by filling in a matrix with a row for
each object and a column for each feature. One or two entries in the matrix were already present:
for example, if participants had been told that the mouse had tested positive for f;, the corresponding
entry in the matrix was set to 100.

5.4. Model predictions

We will evaluate all models by considering both the qualitative effects that they predict and their
quantitative correspondence with the human data. All models except the feature model rely on a tree
that captures taxonomic relationships between the animals. We used the tree shown in Fig. 9 which
captures the idea that the mouse and the rat are very similar, that these two animals are somewhat
similar to the squirrel, and that none of these three animals is very similar to the sheep. The branch
terminating at the sheep is 3 units long, the branch terminating at the squirrel is 2 units, and all
remaining branches are of length 1. Note that the four animals all lie at the same distance from the
root. The tree component of each model has one free-parameter—the total path length of the tree.
The smaller the path length, the more likely that all four animals have the same feature values, and
the greater the path length, the more likely that distant animals in the tree (e.g. the mouse and the
sheep) will have different feature values. For each model, the path length is set to the value that max-
imizes the average correlation with human data across Experiments 1 and 2. The values for the object
model, OC model, DC model and SC model were 3.5, 1.9, 2.9 and 2.0 respectively.

All models except the object model rely on a functional causal model that captures relationships
between the features. The functional models F used for each condition are shown in Fig. B.20. Note
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that the functional models include no free numerical parameters, since the base rates for the root vari-
ables are fixed by the parameters of the network that generated the cards shown to participants dur-
ing the training phase. The OC model has one additional parameter that specifies the weights assigned
to the two component models. All results reported here use a weight of 0.42 for the feature model and
a weight of 0.58 for the object model, and these values maximize the average correlation with human
data across Experiments 1 and 2. The correlations achieved by the model are only marginally lower if
the component models are weighted equally.

The second and third columns of Fig. 10 show predictions for a feature model that uses the feature
structure alone, and an object model that uses the object structure alone. In task 1 of the chain and
common-effect conditions, neither approach predicts that inferences about all three features will de-
cay smoothly over the tree. The feature model does not incorporate taxonomic relationships between
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Fig. 10. Experiment 1: Average human responses (column 1) and predictions for four models. All models generate probabilities
as outputs, and these probabilities have been multiplied by 100 for comparison with the human data. (a) Results for the chain
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the objects and makes identical predictions about the rat, the squirrel and the sheep. The object model
does not incorporate causal relationships between features and therefore has no basis for making pre-
dictions about f, and f; given information about f;.

The final three columns in Fig. 10 show predictions for the three combination models. The predic-
tions of all models are probabilities, and these probabilities have been multiplied by 100 for compar-
ison with the human data reported in the next section. All combination models predict that responses
will be guided by both the feature structure F and the object structure O. The predictions for task 1,
however, reveal an important qualitative difference between the OC model and the DC and SC models.
Given a single observed entry in an object-feature matrix, all of the combination models predict that
humans will make informed inferences about the row and the column that contain the observation.
For example, given that the mouse has f; and that f; causes f, (chain condition), all three models pre-
dict that participants will infer that the rat is relatively likely to have f; and that the mouse is relatively
likely to have f,. The DC and SC models predict that participants will use the single observation pro-
vided to make inferences about the rest of the matrix—for example, in the chain condition both predict
that participants will infer that the rat is relatively likely to have f5. In contrast, the OC model cannot
make informed inferences about entries in the matrix that do not belong to the same row or column as
the single observation, and predicts that participants will fall back on base rates when reasoning about
these entries. Our model evaluation will focus on one important consequence of this qualitative dif-
ference between the models. In task 1 of each condition, the OC model predicts that inferences about
the observed feature will decay over the tree, but that inferences about the remaining features will be
identical for the rat, squirrel and sheep. The DC and SC models predict that inferences about all fea-
tures (chain and common-effect) or about the first two features (clusters) will decay smoothly over
the tree. For example, in task 1 of the chain condition the OC model predicts that inferences about
f> and f5 will be identical for the rat, squirrel, and sheep, but the DC and SC models both predict that
the rat is more likely to have f, and f3 than the sheep.

In task 2 of each condition, all combination models use the causal structure F and the object struc-
ture O to reconcile the two observations provided. In the chain condition, the second observation is
unexpected: given that the mouse has f;, that the rat is similar to the mouse, and that f; causes f>,
it is surprising that the rat does not have f,. All combination models infer that the second observation
makes it less likely that the mouse has f, and that the rat has f;. In the common effect condition the
second observation is less surprising: given that the mouse has f3, this feature was probably caused by
fior f>, and given that the rat does not have f>, f; is the more likely of the two causes. All combination
models therefore infer that all of the animals are more likely to have f; than f,. Task 2, however, does
produce some subtle qualitative differences between the models. As for task 1, we focus here on
predictions about entries in the matrix that do not belong to the same row or the same column as
an observed entry. In the chain condition, the OC model predicts that the squirrel and sheep are both
equally likely to have f3, but the DC and SC model predict that the sheep is marginally more likely than
the squirrel to have this feature. In the common effect condition, the OC model predicts that the squir-
rel and sheep are both equally likely to have f;, but the DC and SC model predict that the squirrel is
more likely than the sheep to have this feature. In the cluster condition, the OC model predicts that
the squirrel and sheep are equally likely to have f, and f3. The DC and SC models, however, predict that
all of the animals are more likely to have the features in the first cluster (f; and f,) than the features in
the second cluster (f3 and f;). All of these qualitative differences are consequences of the fact that the
OC model can make informed entries only about matrix entries that belong to either the same row or
the same column as an observed entry.

5.5. Results

Responses to the preliminary taxonomic task suggested that the tree in Fig. 9 accurately captures
background knowledge about taxonomic relationships between the four animals in our experiment.
Responses to the preliminary causal tasks suggested that participants understood the causal struc-
tures in Fig. 9. These results support the idea that the structures in Fig. 9 are appropriate for modeling
the data collected in the rest of the experiment. More details about the results of the preliminary tasks
are provided in Appendix A.
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Mean responses for the three conditions are shown in the first column of Fig. 10. Before considering
the quantitative fit of each model, we first assess the qualitative predictions identified in the previous
section. In all three conditions, human inferences appear to be guided by both the causal relationships
between features and the taxonomic relationships between objects. In task 1 of each condition, pre-
dictions about all features (chain and common-effect conditions) or about the first two features (clus-
ters condition) decay smoothly over the tree. As predicted by the DC and SC models but not the OC
model, participants are able to use a single observation to make informed predictions about the entire
object-feature matrix. Comparisons between predictions for the rat and the sheep are especially
revealing. In the chain condition, sign tests indicate that the rat is judged more likely than the sheep
to have f, and f5 (p < 0.05 in both cases). In the common-effect condition, the rat is judged more likely
than the sheep to have f; and f, (sign tests yield p < 0.05 in both cases). In the clusters condition, the
rat is judged more likely than the squirrel and sheep to have f, (sign tests yield p < 0.05 in both cases).
All of these results are inconsistent with the feature, object, and OC models, but are captured by the DC
and SC models.

Responses for the second task in each condition suggest that participants reconcile multiple obser-
vations as predicted by the combination models. After receiving a second observation in the chain con-
dition, participants consider it less likely that the mouse has f, and that the rat has f;. In task 2 of the
common effect condition, participants infer that the mouse, the rat and the squirrel are all more likely
to have f; than f5. In task 2 of the clusters condition, participants infer that the mouse, the rat and the
squirrel are all more likely to have f; and f, than f; and f,. Unlike the results for task 1, the data for task
2 provide only partial support for the prediction that participants make informed inferences about en-
tries in the object-feature matrix that do not belong to the same row or column as an observed entry.
In the chain condition, the squirrel is judged more likely than the sheep to have f3, but the DC and SC
models generate a small difference in the opposite direction. In the common effect condition, the
squirrel is judged more likely than the sheep to have f; but a sign test indicates that this difference
is only marginally significant (p < 0.1). In the clusters condition, the squirrel is judged more likely than
the sheep to have f3 (again p < 0.1), but the sheep is judged equally likely to have f, and fs. Overall, the
qualitative effects identified for task 1 provide strong support for the DC and SC models ahead of the
OC model, but the qualitative effects for task 2 do not distinguish as clearly between the combination
models. Note, however, that the qualitative effects for task 2 all correspond to relatively small quan-
titative differences according to the predictions of the SC model.

To further assess the performance of the models we computed correlation coefficients between the
human data and the predictions of each model. A correlation coefficient is a relatively crude measure
of performance in this setting, but Fig. 10 shows that the SC model achieves the highest correlations
overall. The most important differences between the SC model and the OC model emerge in Task 1 of
each condition. Although the correlations achieved by these models are similar, the OC model per-
forms slightly worse than the SC model because it does not make informed inferences about rows
and columns that do not include the single observation provided. In task 1 of the chain condition,
for example, the model observes that the mouse has f; but does not infer that the probability that
the rat has f, is now above baseline. Instead, the model predicts that the rat, squirrel and sheep are
equally likely to have f,. In contrast, the SC model successfully predicts that inferences about all fea-
tures (including f, and f3) will decay over the tree.

The SC and DC models perform similarly in the common-effect and clusters conditions, but the SC
model provides the better account of the chain condition. In task 1, the DC model predicts that the rat,
the squirrel and the sheep are all less likely to have f; than f, and f5. This result is driven by the base-
rate of f; specified by the causal model—note that the feature model also makes the same prediction.
The poor performance of the DC model is therefore consistent with our earlier suggestion that this
model tends to overweight base rate information. The correlation for task 2 of the chain condition
is better, but note that the DC model still makes inaccurate predictions: unlike the SC model, the
DC model predicts that the rat and the squirrel are more likely to have f; than f;. Both tasks in the
chain condition therefore suggest that the DC model provides an imperfect account of how humans
combine causal relationships with taxonomic relationships.

The inferences made by the DC model depend on the free-parameter mentioned previously: the to-
tal path length of the tree O. When this parameter is very small, predictions about all four animals are
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very similar to predictions about the mouse, and when the parameter is very large, the DC model
makes predictions very similar to the feature model. Adjusting the parameter allows the model to
interpolate between these two extremes, but no setting of the parameter allows the model to strike
the right balance between the causal relationships and the taxonomic relationships. The predictions
in Fig. 10 are for the parameter setting that maximizes model performance across all of the tasks,
but if the parameter is fitted specifically for task 1 of the chain condition, the correlation achieved
is still only 0.70.

Although the SC model provides a good account of the average response to each task, it may
seem possible that the success of this model depends on averaging the predictions of participants
with very different strategies. If some participants matched the feature model and others matched
the object model, then the average response would be similar to the predictions of the OC model,
which computes a weighted average of the predictions of the component models. The qualitative
differences between the OC predictions and the human data provide some initial evidence that
some participants are combining feature and object structures. More direct evidence is provided
by partitioning participants into three groups depending on whether their responses relied on
the feature relationships alone, the object relationships alone, or on a combination of these rela-
tionships. To create these groups we computed whether the responses of each participant corre-
lated best with the feature model, the object model, or the SC model. The pathlength
parameters used by the object and SC models were not fit to each individual participant but fixed
throughout to the values that generated the predictions in Fig. 10. Four participants matched the
feature model, two participants matched the feature model, and 10 out of 16 participants matched
the SC model. We can therefore conclude that the average responses in Fig. 10 are representative of
the responses of many participants, and that the majority of participants combined feature rela-
tionships with object relationships.

Overall, the results of Experiment 1 suggest that the combination models are superior to the mod-
els that rely on a feature structure alone or an object structure alone, and that the SC model is the best
of the three combination models. These results suggest that participants can combine relationships
between features and relationships between objects when making inductive inferences, and that
the structure combination model helps to explain how these different kinds of information are
combined.

6. Experiment 2: generalization across objects and features

Experiment 1 provides strong evidence that humans can make inferences that draw on both causal
relationships between features and taxonomic relationships between objects. This result may seem
incompatible at first with the work of Rehder (2006), who found no evidence that people could com-
bine causal and similarity-based reasoning. So far, however, our data are consistent with the hypoth-
esis that causal relationships between features are primary and that taxonomic relationships are used
only when no observations at all are available for some objects. For example, taxonomic relationships
may have played a role in the chain condition of Experiment 1 only because participants were never gi-
ven any information about whether the squirrel and sheep had features fi, f> or f3. As a result, taxonomic
relationships provided the only relevant information that participants could use to make inferences
about these animals.

Our second experiment explores whether taxonomic relationships continue to play a role when
observations for all four animals are available. Since these observations support causal inferences
about each animal, it is possible that participants will now ignore taxonomic relationships and focus
exclusively on causal relationships between features. We predict, however, that participants will con-
tinue to rely on taxonomic relationships in this situation. Our prediction is a consequence of the tax-
onomic influence principle introduced previously. Even if observations are provided for all animals in
the experiment, taxonomic relationships should continue to play a role as long as there are variables
that are unobserved but causally relevant to the features of interest.

3 We thank Bob Rehder for suggesting this hypothesis.
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6.1. Participants

18 MIT undergraduates participated in this experiment. The responses of one participant were re-
moved because he left some pages in the experimental packet blank.

6.2. Procedure

Experiment 2 included two conditions: a chain condition and a common-cause condition. Each
condition included two tasks. In the first task, participants were told only that the mouse had tested
positive for f;. In the second task, participants were told in addition that the rat, the squirrel and the
sheep had tested positive for f;, and that the mouse had tested negative for f,. Note that the second
task is a case where values for feature f; were provided for all animals. Apart from this task, the pro-
cedure for Experiment 2 was identical to that of Experiment 1.

6.3. Model predictions

Predictions for four models are shown in Fig. 11. Predictions for the second task in each condition
are most critical. Even though feature f; is observed for all four animals, the SC and DC models still
predict a taxonomic effect: as taxonomic distance from the mouse increases, animals become more
likely to have f,. The feature model makes a different prediction—note that this model does not take
taxonomic relationships into account, and therefore makes identical predictions about the rat, the
squirrel and the sheep.

6.4. Results

Fig. 11 shows mean responses for the participants and the four models described previously. The
judgments for the first task in each condition replicate the finding from Experiment 1 that participants
combine feature relationships and object relationships when just one of the 12 animal-feature pairs is
observed. The results for the second task suggest that taxonomic information continues to be used
even when observations for all four animals are provided. In both conditions, for example, participants
infer that the rat is less likely than the sheep to have f, (sign tests yield p < 0.05 in both cases).

As for Experiment 1 we explored individual differences by dividing participants into groups
depending on whether their responses correlated best with the feature model, the object model, or
the SC model. Two participants matched the feature model, six participants matched the object model,
and 9 out of 17 participants matched the SC model on the basis of their complete set of responses.
Since the second task in each condition is critical for distinguishing between the feature model and
the SC model, we ran a second analysis using data from the second task only and computing whether
each participant better matched the feature model or the SC model. 14 out of 17 participants matched
the SC model better than the feature model, and a sign test suggests that this result is statistically sig-
nificant (p < 0.05). We can therefore conclude that the majority of participants relied on taxonomic
information even in task 2.

Taken together, Experiments 1 and 2 provide strong evidence that humans combine causal rela-
tionships between features with similarity relationships between objects. This result may seem
incompatible at first with previous studies which suggest that causal inferences often dominate sim-
ilarity-based inferences (Lassaline, 1996; Wu & Gentner, 1998; Rehder, 2006; Hayes & Thompson,
2007). Experiment 3 of Rehder (2006) is a representative example. In this experiment, participants
were presented with a source object with features C and E and told that C caused E. They then had
to decide whether a target object also had feature E. Responses were primarily shaped by whether
or not the target object had feature C, and there was only a small effect of the overall similarity be-
tween the source and target objects. Rehder (2006) uses this experiment to support his overall con-
clusion that causal reasoning and similarity-based reasoning often compete, but the results of this
experiment are consistent with the predictions of the SC model. First, the model can account for
the small but statistically significant effect of similarity. Second, the model can explain why the effect
of similarity is relatively small in this case. If C is the only possible cause of E, and if the relationship
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Fig. 11. Experiment 2: Behavioral data and predictions of five models. In task 2 of each condition, feature f; is observed for all
four animals.

between C and E is near-deterministic, then the SC model predicts that the similarity between source
and target is relatively uninformative about whether the target has feature E. This prediction is a con-
sequence of the taxonomic influence principle identified above, which suggests that similarity rela-
tionships are used only when they are informative about the distribution of unobserved but
causally relevant variables. Other studies where causal inferences appear to dominate similarity-
based inferences also use causal relationships that are plausibly interpreted as near-deterministic
(Lassaline, 1996; Wu & Gentner, 1998), and this factor may explain the consistent finding that causal
inferences tend to dominate similarity-based inferences (Stephens, Navarro, Dunn, & Lee, 2009).

Although our theory accounts for the third experiment presented by Rehder (2006), it does not ac-
count for his first experiment. This experiment considers a case where some participants rely on sim-
ilarity-based reasoning, others rely on causal reasoning, and no individual appears sensitive to both
similarity relationships and causal relationships. The SC model can accommodate contexts where sim-
ilarity-based reasoning appears to dominate causal reasoning, and others where causal reasoning ap-
pears to dominate similarity-based reasoning. The model, however, does not explain how a single
context could produce both patterns of responses. We return to this issue in the General Discussion,
and consider the implications for future models of generalization.

7. Experiment 3: counterfactual interventions

Our previous two experiments explored how relationships between features and relationships be-
tween objects are combined in order to carry out generalization tasks. Our final experiment explores
whether relationships between features and relationships between objects are combined in a way that
is intrinsically causal. As mentioned earlier, a popular approach to across-feature generalization uses
causal Bayes nets to capture relationships between features (Rehder, 2003). Many accounts of across-
object generalization, however, are not intrinsically causal, including the similarity coverage model
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(Osherson, Stern, Wilkie, Stob, & Smith, 1991) and Sloman’s feature-based model (Sloman, 1993).
Since accounts of across-feature generalization have emphasized causal knowledge but models of
across-object generalization have not, it remains to be seen whether causal knowledge plays a critical
role in settings that require generalization across both objects and features.

The combination models we have considered throughout suggest two qualitatively different ways
in which people might make causal inferences that draw on multiple systems of knowledge. Suppose,
for example, that a reasoner is asked to make predictions about a counterfactual intervention. The OC
and DC approaches suggest a strategy where each component model is adjusted to allow for the coun-
terfactual intervention and then the adjusted models are combined. Each component model may sup-
port causal reasoning, but once these models are combined the combination does not support causal
reasoning in any obvious way. The SC approach suggests a different strategy where the component
models are combined in a way that is intrinsically causal. As a result, the combination of the models
can be directly used to address causal queries. Note that the SC model is defined over a causal graph
structure, and that this structure can be manipulated in the standard way to make inferences about
interventions and counterfactuals.

The critical difference between the three combination models is whether knowledge is combined at
the level of predictions (the OC model), the level of probability distributions (the DC model) or the le-
vel of causal structures (the SC model). Experiments 1 and 2 suggest that all approaches can account
for generalization to some extent, but the SC model may be uniquely able to predict certain inferences
that rely on computations defined over a causal structure. Inferences about counterfactual interven-
tions are one candidate (Pearl, 2000; Sloman & Lagnado, 2005; Rips, 2010) and our final experiment
explores whether human counterfactual inferences rely on a causal structure that simultaneously
incorporates relationships between features and relationships between objects.

7.1. Participants

32 CMU undergraduates participated in this experiment for course credit. All participants were
drawn from the general CMU participant pool.

7.2. Materials

Experiment 3 used six feature structures F, each of which captures a relationship between a cause
feature and an effect feature. The six structures were identical except that different pseudo-biological
labels were used for each pair of features. Here we use f; to refer to each cause feature and f, to refer to
each effect feature. For all six structures, participants were told that f, is known to be produced by sev-
eral pathways, and that the most common pathway begins with f;, which directly stimulates produc-
tion of f5.

7.3. Procedure

Participants were asked to reason about the same four animals used in Experiments 1 and 2. The
experiment began with three preliminary tasks. The first task was the taxonomic task used in Exper-
iments 1 and 2. The second and third tasks were an intervention task and an observation task, and
each task used one of the six feature structures described in the previous section. In the intervention
task, participants were told that “earlier in the day the mouse was injected with a syringe full of f,".
They were told that the mouse had subsequently tested positive for f>, and were asked to predict the
outcomes of the seven remaining tests involving the four animals and the two features. In the obser-
vation task, participants were told that the mouse had tested positive for f, and were asked to predict
the outcomes of the seven remaining tests. The intervention and observation tasks were included in
order to introduce the notion of causal interventions, and to give participants a chance to reflect on
whether observations and interventions support different kinds of inferences. The order of these tasks
was counterbalanced across participants.

After the preliminary tasks, participants were given four tasks where they were asked to make
inferences about counterfactual interventions. In each case participants were presented with a
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complete matrix of objects by features. The four matrices used are shown in Fig. 12. In each case, par-
ticipants were asked to imagine that earlier in the day the mouse had been injected with a syringe full
of enzyme f;. They then rated the probability that the mouse would have tested positive for enzyme f,
on a seven point scale where 1 was labeled “very unlikely” and 7 was labeled *“very likely”. The order
of the four counterfactual tasks was counterbalanced across participants.

The preliminary intervention task and the counterfactual tasks both ask participants to think about
cases where the mouse is injected with an enzyme “earlier in the day” and is later tested for the pres-
ence of one or more enzymes. The time interval between the injection and the tests is critical for the
counterfactual task—the biological process by which f; causes f, presumably takes some time, which
means that it makes sense to ask participants about a test for f, that is carried out some time after the
counterfactual intervention. The intervention task, however, could be improved by asking participants
about tests carried out immediately after the intervention. As a result, the intervention task is not ideal
for assessing how participants reason about interventions, and is best viewed as a preliminary task
that helps to set up the cover story for the counterfactual tasks.

Two of the preliminary tasks and all four of the counterfactual tasks used a feature structure where
f1 causes f,. As for Experiments 1 and 2, this information was reinforced by showing participants 20
cards for each feature structure. The distribution of cards appears in Table A.3, and is consistent with
the functional causal model shown in Fig. B.20e. As for Experiments 1 and 2, participants could study
these cards for as long as they liked, but the cards were removed before they proceeded with the
experiment.

7.4. Model predictions

Suppose first that we are interested only in the mouse which has tested positive for f; and negative
for f>. Since the mouse already had enzyme f;, injecting it with f; would probably have made little dif-
ference, and the mouse would probably still have tested negative for f,. Suppose next that the mouse
tests negative for f; but positive for f,. If we had intervened and injected the mouse with f; it is rea-
sonable to expect that the mouse would still have tested positive for f,. Suppose finally that the mouse
tests negative for both f; and f>. Since f; causes f,, we might expect that injecting the mouse with f;
would have made it more likely that the test for f, would have been positive.

All of the inferences just described can be captured by working with a functional causal model that
captures the relationship between f; and f, (Pearl, 2000). The first step is to create a twin graph that
includes nodes for the counterfactual values of f; and f>. In Fig. 13a.i, these counterfactual nodes are
labeled g; and g,. Note that the parents of g; and g, correspond to the parents of f; and f,, consistent
with the idea that the causal mechanisms in the counterfactual world match the causal mechanisms in
the actual world. We can now reason about a counterfactual intervention on f; by using the manipu-
lated graph in Fig. 13a.ii. All incoming edges to g; have been broken to capture the idea that variable g,
is set by an intervention, and that observing the value of g; therefore provides no information about
the values of its parent variables. Inferences about any other variables can now be made by carrying
out Bayesian inference over the manipulated graph. In particular, we can compute the probability that
g, =1, which represents the probability that the mouse would have tested positive for f, after being
injected with f;.

The second plot in Fig. 14 shows the predictions when the feature model is adjusted as just de-
scribed to allow for the four counterfactual interventions. Since the feature model assumes that the

Task 1 Task 2 Task 3 Task 4
fi f2 fi fo fi Ja fi fa

mouse 1 0 0 0 0 0 0 1
rat 1 1 1 0 1 1 1 0
squirrel 1 1 1 0 1 1 1 0
sheep 1 1 1 1 1 1 1 1

Fig. 12. Observations for the four counterfactual tasks. In each case participants are asked to decide whether the mouse would
have tested positive for f, if it had been injected with f;.
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rows of the object-feature matrix are conditionally independent given the feature structure, the pre-
dictions of this model can be computed by using the twin graph in Fig. 13a.i to reason about the mouse
in isolation. Note that the predictions for tasks 2 and 3 are identical—since the feature vectors for each
animal are conditionally independent, information about the rat, the squirrel and the sheep does not
influence counterfactual predictions about the mouse.

The third plot shows predictions according to the object model. Since the object model is not for-
mulated as a functional causal model, the approach to counterfactual reasoning summarized by
Fig. 13a cannot be directly applied. The prediction of the object model, however, is straightforward.
Since the features are assumed to be conditionally independent given the object structure, a counter-
factual intervention on f; would have had no influence on f,, which means that predictions about f,
should track the actual values of f,. In other words, adjusting the object model to allow for the coun-
terfactual intervention leads to no change in the f, value observed for the mouse.

The fourth plot shows predictions of the OC model. These predictions are computed by adjusting
the feature and object models to allow for the counterfactual intervention, then averaging the predic-
tions of these adjusted models. The OC predictions therefore correspond to a weighted average of the
predictions for the feature and object models, and are qualitatively similar to the predictions of the
feature model.

The fifth plot shows predictions according to the DC model. As already described, the adjusted ob-
ject model assigns a probability of 1 to the hypothesis that the counterfactual f, value for the mouse is
identical to the f, value actually observed. As a result, the predictions of the DC model are identical to
the predictions of the object model. Since the adjusted object model assigns probability mass to just
one hypothesis, multiplying the distributions for the adjusted object and feature models produces a
distribution that assigns non-zero probability mass to just one hypothesis—the same hypothesis fa-
vored by the adjusted object model.

The final plot shows predictions of the SC model. Fig. 13b.i shows how the SC model in Fig. 8 can be
converted into a twin graph. Manipulating this graph as shown in Fig. 13b.ii allows us to make infer-
ences about a counterfactual situation where 0, is injected with enzyme f;. Model predictions for all

(a) (i) (ii)
H & OO0 @@ W & OO0 @@

L | L |
actual counterfactual actual counterfactual

(b) (i) (ii)

OO0 OO OO0 OO
OO0 OO OO0 OO
OO0 OO OO0 OO0

L | L |
actual counterfactual actual counterfactual

Fig. 13. Counterfactual reasoning (a) (i) The causal model from Fig. 4b has been supplemented with two additional nodes (g;
and g,) which represent counterfactual values of f; and f>. (ii) A manipulated graph for reasoning about the value that f, would
have taken if an intervention had fixed the value of f;. (b) (i) The SC model from Fig. 8 has been supplemented with six
additional nodes that represent counterfactual values of the two features for the three objects. (ii) A manipulated graph for
reasoning about what would have happened if the f;-value for object 0; had been fixed by an intervention.
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Fig. 14. Results and model predictions for Experiment 3. The object-feature matrices for each task are reproduced from Fig. 12.

four of the counterfactual tasks in Experiment 3 are shown in Fig. 14. The first task is a case where the
mouse already has enzyme f; in the actual world. A counterfactual manipulation where the mouse is
injected with f; should therefore make little difference, and the mouse should still test negative for f5.
The second task is a case where the mouse tests negative for f; and f>. Note that the rat and the squirrel
have f; but not f,, suggesting that the mouse would also have tested negative for f, even if injected
with fi. The third task is similar, except that now the rat and the squirrel have both f; and f>, which
suggests that the mouse would also test positive for f, if injected with f;. The final task is a case where
the mouse already has f>. Injecting the mouse with f; should therefore make little difference and the
mouse should still test positive for f,.

7.5. Results

Responses to the preliminary taxonomic task were similar to the responses to the taxonomic tasks
in Experiments 1 and 2 and are not described further. Responses to the remaining two preliminary
tasks suggested that observations and interventions were treated differently overall. Because these re-
sults do not differentiate among the models considered in this paper, full details are provided in
Appendix A.

Average responses for the four counterfactual tasks are shown in Fig. 14. Out of the five models in
Fig. 14, the rank order of the four responses is consistent only with the SC model. The most critical
comparison occurs between tasks 2 and 3, and a sign test indicates that responses for task 3 are sig-
nificantly greater than responses for task 2 (p < 0.05). The observed feature values for the mouse are
the same for both tasks, and the first four models therefore make identical predictions about these
tasks. Only the SC model correctly predicts that observed feature values for the other animals will
shape counterfactual inferences about the mouse. Sign tests also indicate that responses for task 3
are significantly greater than responses for task 1 (p < 0.05), and that responses for task 4 are signif-
icantly greater than responses for task 2 (p < 0.001). Note that both pairs differ only with respect to the
observed feature values for the mouse.

Fig. 15 summarizes the responses of individual participants, and shows that the modal response is
consistent with the SC model. Seven out of 32 participants generated responses that match the rank
order predicted by the model, and an additional 13 participants generated responses that collapse one
or more of the distinctions present in the modal response.

6
4
counts
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Fig. 15. Individual differences analysis for Experiment 3. The classifications are based on the rank order of responses to the four
tasks, and vertical lines indicate differences in rank. For example, 1|2|3|4 matches the rank order predicted by the SC model, and
1234 indicates that the same response was given to all four tasks.
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Taken overall, our results suggest that people are capable of reasoning about counterfactual inter-
ventions in settings that draw on relationships between objects and relationships between features.
Only the SC model accounts for the full pattern of results, which suggests that people combine multi-
ple models at the level of causal structures rather than at the level of predictions or probability distri-
butions. Our data therefore suggest that relationships between objects and relationships between
features are combined in a way that is intrinsically causal.

8. General discussion

We formalized generalization as the problem of reasoning about object-feature matrices and eval-
uated three computational approaches that address this problem by incorporating both relationships
between objects and relationships between features. All three models rely on a graph structure over
objects and a graph structure over features, and our data suggest that combining these structures di-
rectly (the SC approach) provides a better account of human reasoning than combining the distribu-
tions induced by these structures (the DC approach) or combining the outputs produced by these
structures (the OC approach).

Our first two experiments suggested that humans readily combine relationships between objects
and relationships between features. The SC model accounts well for the results of these experiments
and performs substantially better than alternatives that rely on object knowledge alone or feature
knowledge alone. The model also accounts for an important qualitative effect that is inconsistent with
the OC model. Given a partially-observed object-feature matrix, the OC model predicts that people are
able to make informed inferences only about entries that belong to the same row or column as an ob-
served entry. Experiment 1, however, showed that participants make informed inferences about an
entire object-feature matrix after observing a single entry in the matrix.

Experiments 1 and 2 suggested that the SC model provides a better quantitative account of human
reasoning than the DC model, but even so the DC model accounts relatively well for the results of these
experiments. Experiment 3 explored a setting where the predictions of the SC model depart sharply
from both the DC and the OC models. Our data suggest that the SC model alone is able to explain
why inferences about a counterfactual intervention on a given object (e.g. a mouse) are shaped by
the observed features of other objects (e.g. a rat and a squirrel).

Our comparison between the three combination models suggests that human knowledge about
relationships between objects is tightly integrated with knowledge about relationships between fea-
tures. The OC model explores the hypothesis that these two forms of knowledge are captured by dis-
tinct modules, but our data suggest that a modular approach will struggle to explain how humans
make inferences about an entire object-feature matrix given only a handful of observations. Multiply-
ing probability distributions provides one way to integrate systems of knowledge, but our data suggest
that combining structured representations will provide the best way to explain how different systems
of knowledge work together.

Although the SC model is constructed by combining existing models of inductive reasoning it goes
beyond these models in several ways. First, it provides a unified view of two inductive problems—
across-object and across-feature generalization—that are often considered separately. Second, unlike
previous accounts of across-feature generalization, it acknowledges the importance of unknown but
causally relevant variables, and uses taxonomic relationships to constrain inferences about the effects
of these variables. Third, unlike most previous models of across-object generalization, the model can
handle novel features that are causally linked to known features. Finally, the model helps to explain
how counterfactual inferences are made in settings that simultaneously draw on relationships be-
tween objects and relationships between features.

8.1. Generalization and causal reasoning

Studies of inductive generalization in adults (Lee & Holyoak, 2008; Rehder, 2009) and children
(Carey, 1985; Opfer & Bulloch, 2007; Hayes & Thompson, 2007) have suggested that inductive infer-
ences often rely on causal theories. Our approach is consistent with this general claim. For expository
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convenience we have emphasized the distinction between causal relationships between features and
taxonomic relationships between objects, but relationships between objects will often have a causal
interpretation. A tree-structured taxonomy, for example, is a simple representation of the causal pro-
cess that generated biological species—the process of evolution (Kemp & Tenenbaum, 2009). The
graphical model in Fig. 8 can therefore be viewed as a causal theory that incorporates causal relation-
ships between features and causal relationships between species.

Our comparison between the DC and SC approaches supports the idea that causal reasoning plays
an important role in human generalization. The most fundamental difference between these ap-
proaches is that the SC approach alone combines models in a way that is intrinsically causal. The
DC approach is intuitive and accounts fairly well for our first two experiments. Our third experiment,
however, demonstrates that the approach fails to account in full for human inferences about
counterfactuals.

Although causal reasoning appears to contribute to many inferences, studies suggest that humans
often rely on causal theories that are fragmentary or incomplete (Rozenblit & Keil, 2002). Results of
this kind challenge causal accounts of generalization—how can humans make successful causal infer-
ences if they do not understand the causal mechanisms that apply in any given setting? Our approach
suggests a partial answer. Even though detailed causal theories are typically unavailable, general cau-
sal principles can still support accurate causal inferences. One such principle holds that objects with
similar observable features are often influenced by similar causal factors, and this similarity can sup-
port causal reasoning even if the actual causal mechanisms remain unknown. Our work therefore be-
gins to explain one of the most impressive aspects of human causal reasoning—the ability to make
successful inferences in the presence of many hidden variables.

8.2. Combining knowledge structures

There are many previous accounts of inductive reasoning, including accounts that focus on rela-
tionships between objects (Osherson et al., 1991) and accounts that focus on relationships between
features (Rehder, 2003). A distinctive aspect of our account is that it incorporates these two kinds
of relationships. Hadjichristidis et al. (2004), Holyoak et al. (2010) and Stephens et al. (2009) have also
developed accounts that incorporate relationships between objects and relationships between fea-
tures, and here we compare these accounts to our own.

Hadjichristidis et al. (2004) focus on a problem similar to across-object generalization (Fig. 1a), but
consider arguments where the premise and conclusion refer to categories (e.g. mice and rats) rather
than individual objects (e.g. a specific mouse and a specific rat). They propose that the strength of
an argument depends on the similarity of the conclusion category to the premise category and the
causal centrality of the feature involved. The causal centrality of a feature depends on its relationships
to other features, and the account of Hadjichristidis et al. (2004) therefore incorporates both relation-
ships between categories and relationships between features. Although the work of Hadjichristidis
et al. (2004) is directly relevant to the problem of combining multiple knowledge structures, it differs
from our approach in least two respects. First, our model addresses the general problem of completing
a partially-observed matrix of objects by features, but Hadjichristidis et al. (2004) consider only the
problem of across-object generalization. For example, their account would need to be supplemented
in order to handle the generalization problem in Fig. 1c. Second, Hadjichristidis et al. (2004) do not
provide a computational model that indicates how causal centrality and similarity should be com-
bined. Sloman, Love, and Ahn (1998) have developed a computational account of causal centrality,
but additional work is needed to specify how this model might be combined with a formal model
of similarity-based reasoning.

Holyoak et al. (2010) have developed a computational model that integrates causal inference with
analogical reasoning and will be referred to here as the causal-analogical model (CA model for short).
The CA model is motivated by the idea that a causal model learned for a source object can influence
the model used to reason about the features of an analogous target object. Although we focused on
taxonomic relationships between objects rather than analogical mappings, the SC model is motivated
by a similar idea. We believe, however, that the two models have complementary strengths. Unlike
the SC model, the CA model is designed to handle cases where the causal models for two objects
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may have different structures—for example, cases where there is no perfect correspondence between
the causal edges in the graphs for source and target. Unlike the CA model, the SC model captures the
idea that the causal parameters associated with two objects can be more or less similar depending on
the overall taxonomic relationship between the two objects.* Ultimately it may be possible to develop a
model that combines the strengths of both approaches, and that uses taxonomic relationships to shape
inferences about both the structure and the parameters of the causal model for a given object.

In a separate line of work, Stephens and colleagues (Stephens et al., 2009) have used a paradigm
similar to ours to study integrated reasoning and have developed an integrated causal model that is
different from ours. The SC model combines a functional causal model and an object-based taxonomy
by introducing a copy of the taxonomy for each root variable in the functional model. Stephens and
colleagues use the same approach to combine a taxonomy with a causal model that incorporates prob-
abilistic relationships—in other words, they introduce a copy of the taxonomy for each root variable in
the probabilistic causal model. We will refer to the resulting model as the probabilistic structure com-
bination model, or PSC model for short. The PSC model makes similar predictions to the SC model in
some settings but suffers from two limitations. First, the PSC model predicts that taxonomic relation-
ships have no further role to play once the root variables in the probabilistic model are observed for
each object, and therefore cannot account for the result of our second experiment. Second, the PSC
model does not rely on functional causal models, and is therefore unable to account for the counter-
factual inferences explored in our third experiment. Given both of these limitations, we believe that
the SC model should be preferred to the alternative that Stephens and colleagues consider.

The models discussed in this section combine knowledge structures in slightly different ways, and
there are presumably many other ways in which knowledge structures could be combined. The com-
bination strategy preferred by humans could well depend on the context, but our work suggests two
basic principles that may be widely applicable. First, causal considerations will often dictate how
knowledge representations should be combined. For example, the SC and DC models both incorporate
the same components, but the SC model alone combines these components in a way that respects cau-
sality. As a result, the SC model provides a more accurate account of inferences about counterfactuals.
The second basic principle is that probabilistic inference provides a useful general framework for com-
bining different kinds of knowledge. Different probabilistic models may capture qualitatively different
forms of knowledge, but probability theory provides a lingua franca for binding them together.

8.3. When are knowledge structures combined?

As applied to our experiments, the structure combination model relies on two structures: the first
captures taxonomic relationships between objects and the second captures causal relationships be-
tween features. Commonsense knowledge, however, includes many other kinds of structures, and
models of generalization should ultimately aim to incorporate all of these structures. For example,
inductive generalizations about animals may draw on ecological knowledge (animals that share the
same habitat are likely to catch the same diseases) and social knowledge (animals chosen as pets
are likely to share certain features).

Here we focused on problems where multiple knowledge structures are available and the best
inferences tend to be compatible with all them. In other settings multiple knowledge structures
may be relevant, but the best inference in any case may not depend on all of them. Suppose, for exam-
ple, that inferences about biological features depend on a structure that captures taxonomic relation-
ships between animals, and a second structure that captures ecological categories (Shafto, Kemp,
Mansinghka, & Tenenbaum, 2011). Inferences about some features will depend on both structures—
for example, “has blubber” is a feature that tends to be shared only by marine mammals. Other fea-

4 Holyoak et al. (2010) assume that base rate parameters for the source and target are identical, and also assume that any causal
relationship in the target that is analogous to a causal relationship in the source has the same causal strength in these two cases.
Eq. (3) in their paper allows the possibility that corresponding causal parameters may differ, but the model as implemented
appears to assume that corresponding causal strengths are identical as described in Eqs. (4) and A4 of their paper. In order to
account for the results of our experiments, we believe that the CA model would need to use a version of their Eq. (3) which
captures the idea that the source and target are likely to have similar causal parameters to the extent that the two are
taxonomically related.
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tures will depend on only one structure: for example, “is warm-blooded” is shared by all mammals,
and “has a streamlined body shape” is shared by many marine creatures. A comprehensive account
of generalization should be able to select the structures that are relevant to a given inference, and
to flexibly combine these structures when needed.

The need for an account of structure selection becomes especially apparent as the number of dif-
ferent structures increases. Experiment 1 of Rehder (2006) suggests, however, that structure selection
can play an important role even in relatively simple contexts. As part of Rehder’s study, participants
were shown a novel exemplar of a category and were told that this exemplar had a feature E that was
caused by one of the characteristic features of the category. They were then asked to estimate the pro-
portion of category members that had feature E. Two distinct strategies were observed—half of the
participants relied on the fact that E was causally related to a characteristic category feature, and
the other half relied on the similarity between the novel exemplar and the category prototype. No sin-
gle participant gave responses that were sensitive to both the causal information and the similarity
between the exemplar and the category prototype.

Rehder’s data suggest that there are settings where multiple knowledge structures are relevant, but
where participants make inferences based on the single structure that first comes to mind. Our data,
however, suggest that there are similar settings where the majority of participants combine multiple
knowledge structures. An important direction for future work is therefore to characterize the factors
that determine whether reasoners select a single knowledge structure or attempt to combine multiple
structures. One relevant factor is the salience of the structures involved. Unlike Rehder’s first experi-
ment, all of our experiments included a preliminary task that drew upon causal knowledge and a pre-
liminary task that drew on taxonomic knowledge. As a result, both kinds of knowledge were
presumably relatively salient when participants were asked to generalize across objects and features.
A second relevant factor is the principle of least effort (Zipf, 1949): even if multiple structures are sali-
ent, participants presumably incur the cognitive cost of combining them only if they believe that a sin-
gle structure is unlikely to provide acceptable answers.® Shafto, Coley, and Baldwin (2007) use a
speeded induction task to show that some knowledge structures are easier to access than others, and
a similar paradigm could be used to test the proposal that combining multiple structures is relatively
demanding.

Although the problem of structure selection is important, this problem is not addressed by the
structure combination model developed in this paper. The model applies in cases where the relevant
structures have been selected already, and the remaining challenge is to decide how to combine them.
Ultimately, however, it may be possible to develop a more comprehensive computational account
where the input to the structure combination module is provided by a computational account of struc-
ture selection.

9. Conclusion

Humans make many kinds of inductive inferences. Psychologists have made substantial progress
by studying each kind of inference in isolation, but should ultimately aim for unifying accounts (New-
ell, 1989; Kemp & Jern, 2009) that can account for many kinds of inferences. We have taken a step in
this direction by developing a model that accounts for across-object and across-feature generalization,
including cases where both kinds of generalization must work in tandem. Our model simultaneously
draws on taxonomic relationships between objects and causal relationships between features, and our
experiments confirm that people are able to combine these two kinds of information.

Although our model incorporates multiple kinds of information, the knowledge captured by this
model still falls well short of the complexity of commonsense knowledge. Accounts of generalization
will eventually need to grapple with this complexity, and future studies of inductive reasoning will
need to explore how many different pieces of knowledge are integrated and composed. Our work sug-
gests that causal representations are useful for combining multiple systems of knowledge, and future

5 We thank an anonymous reviewer for highlighting the issue of structure selection, and for pointing out that a principle of least
effort is likely to be relevant.
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studies can aim to use this approach to capture increasingly large systems of commonsense
knowledge.

Appendix A. Experimental details

In each condition of our experiments, participants read a description of the causal relationships be-
tween a set of enzymes. Participants were then given a set of 20 cards that showed the distribution of
these enzymes among a group of 20 unnamed mammals. The cards for each condition are shown in
Tables A1-A3. In the chain condition, for example, most animals that have f; also have f,, and most
animals that have f, also have fs.

Experiment 1 included a preliminary task to confirm that participants were familiar with the tax-
onomic relationships between the four animals in the experiment (rat, mouse, sheep and squirrel).
Each question on this test informed participants that one of the animals had tested positive for a novel
enzyme, and asked them to predict whether the remaining animals would also test positive for this

Table A.1

To reinforce the causal structure described in each condition, participants were shown cards that indicated the presence
or absence of three enzymes (fy, f> and f3) in 20 unnamed animals. The final three columns of the table show card counts
for the chain, common effect and common cause conditions.

fi f f3 Chain Common effect Common cause
0 0 0 6 6 8
0 0 1 3 2 1
0 1 0 1 1 1
0 1 1 3 5 0
1 0 0 1 1 1
1 0 1 0 5 2
1 1 0 1 0 2
1 1 1 5 0 5
Table A.2
Card counts for the clusters condition.

fi 2 fz fa Clusters

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 1 0 0 1

1 0 0 0 1

0 0 1 1 2

1 1 0 0 2

1 1 1 0 2

1 1 0 1 2

1 0 1 1 2

0 0 1 1 2

1 1 1 1 3

Table A.3
Card counts for the tasks in Experiment 3.
fl f2
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Fig. A.16. A preliminary taxonomic task measured pre-existing knowledge about taxonomic relationships between the four
animals in our experiment. Each plot in the top row shows human inferences about the distribution of a novel enzyme given
that one animal (the column with value 100) is known to have the enzyme. The bottom row shows predictions of the tree-
structured probabilistic model in Fig. 9.
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Fig. A.17. A second set of preliminary tasks was included to determine whether participants had understood the causal
information provided during the training phase. Each plot shows inferences about the enzymes expressed by a novel mammal.
The first plot in each row shows inferences about a mammal that has not yet been tested for any of the enzymes. The remaining
plots show inferences about a mammal that has tested positive for one enzyme (the column with value 100). The bottom row of
each pair shows predictions of the functional model used to model each condition.

enzyme. The results (Fig. A.16) are consistent with the taxonomic relationships captured by the tree
structure O in Fig. 9a, and are accurately predicted by a probabilistic model defined over this structure.



C. Kemp et al./ Cognitive Psychology 64 (2012) 35-73 69

(a) Observation task
confidence fi f2

v
100 @22 J r=0.83 r=0.85 r=0.87 r=0.94 r=0.95
75
50
25

(b) Intervention task
confidence h fe

100/ g XY ) r=0.94 1=0.94 r=0.94 r=0.92 r=0.94
75

50

25 L 1

mouse rat  sqrl sheep mouse rat sqrl sheep mouse rat sqrl sheep mouse rat sqrl sheep mouse rat sqrl sheep mouse rat sqrl sheep
Human Feature model Object model OC model DC model SC model

Fig. A.18. Results for the preliminary observation and intervention tasks in Experiment 3.
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Fig. A.19. Individual differences analysis for the preliminary observation and intervention tasks of Experiment 3. The DD group
includes participants who generated ratings for both features that decay (D) over the tree. The UU group includes participants
who generated ratings for both features that were uniform (U) over the tree.

Experiment 1 also included a set of preliminary causal tasks to confirm that participants had
learned the feature structures F for each condition. The results (Fig. A.17) suggest that participants
had learned these structures, and are well predicted by the functional models used to model each
condition.

Experiment 3 included a preliminary observation task and a preliminary intervention task. Model
predictions and mean responses to these tasks are shown in Fig. A.18. All models predict that the two
tasks will be treated differently. For example, observing that the mouse has f, should suggest that the
mouse is likely to have f; and that the rat is likely to have f,, but intervening so that the mouse has f,
should not provide any information about the other entries in the object-feature matrix. We evaluated
the prediction that the observation and the generalization tasks are psychologically different by using
a two-way ANOVA with repeated measures to explore the relationship between the task (observation
or intervention) and the seven missing entries in the object-feature matrix. There were main effects of
task (F=12.4, p<0.001) and matrix entry (F=62.1, p <0.001), but no interaction between task and
matrix entry (F=1.63, p = 0.13). The main effect of task suggests that the observation and intervention
tasks are treated differently, and we ran follow-up tests to explore the prediction that inferences were
stronger for the observation task than the intervention task. Inferences that the mouse had f;, that the
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(a) Chain Random variables Deterministic combinations
by 04 b | P(fi=1]b1) by f1 ta | P(fo=1[bs, f1,ts) bs fo ts | P(fs=1[bs, fo, t3)
@ @ by 0.3 0 0 0 0 0 0 0 0
by 0.3 1 1 0 0 1 0 0 0 1 0
ta 0.7 0O 1 0 0 0o 1 0 0
ty 0.7 0 1 1 1 0 1 1 1
1 0 0 1 1 0 0 1
10 1 1 1 0 1 1
@ @ @ 11 0 1 11 0 1
11 1 1 11 1 1
(b) Common effect
b 06 b s | P(fi=1]ps) b s | P(fo=1Jb,s) by b t3 P(fs = 1|b3, b, t3)
s 05 0 0 0 0 0 0 0 0 0 0
by 0.3 0 1 0 0 1 0 0 0 1 0
ts 0.7 10 1 1 0 0 0 1 0 0
1 1 0 1 1 1 0 1 1 1
1 0 0 1
10 1 1
1 10 1
11 1 1
o 06 by o t P(fi =1|bi,c1,t1) by c1 ty | P(fs=1lbs,c1,ta)
¢ 0.6 0O 0 0 0 0O 0 0 0
b 0.3 0o 0 1 0 0o 0 1 0
by 0.3 0o 1 0 0 0o 1 0 0
b 0.3 0 1 1 1 0 1 1 1
by 0.3 1 0 0 1 1 0 0 1
607 10 1 1 1 0 1 1
th 07 1 1 0 1 1 1 0 1
07 11 1 1 11 1 1
ty 0.7
by 0.5 b | P(f=1[b) by fi ta | P(fa=1[bs, f1,t2) by fi ts | P(fs=1|bs, f1,t3)
by 01 0 0 0 0 0 0 0 0 0 0
by 0.1 1 1 0 0 1 0 0 0 1 0
t 07 0 1 0 0 0 1 0 0
ty 0.7 0 1 1 1 0 1 1 1
1 0 0 1 1 0 0 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
11 1 1 11 1 1
by 0.4 bi | P(fi=1]h) by fi ¢ P(fo = 1bo, f1,1)
by 0.3 0 0 0 0 0
t 0.7 1 1 0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
11 1 1

Fig. B.20. Functional causal models used to generate the training cards for each condition and to compute the predictions of the
0OC, DC, SC and feature models (Figs. 10 & 11). In each network, the nodes without parents are independent random variables,
and the base rate for each variable is shown. Each remaining node takes a value that is a deterministic function of the values of
its parent nodes. (a) The chain structure is equivalent to a noisy-OR network. Variable b; indicates whether the background
cause for f; is present, and variable t; indicates whether the mechanism of causal transmission between f;_; and f; is active. (b)
Variables f; and f, in the common effect structure are mutually exclusive. If the background cause b is present, then exactly one
of these variables will be true, and this choice is a deterministic function of the switching variable s. (¢) and (d) The cluster and
common cause structures are equivalent to noisy-OR networks. Only two of the deterministic conditional probability
distributions for the cluster structure are shown. (e) The structure used for Experiment 3.
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rat had f; and that the rat had f, were all stronger for the observation task than the intervention task
(sign tests yield p <0.01 in all cases).

Although the observation and intervention tasks appear to be treated differently, the generalization
gradients for the intervention task are not completely flat as predicted by the models. Analyzing the
responses of individual participants suggests that these weak generalization gradients are produced
by averaging the responses of two groups, where one group generates decaying generalization gradi-
ents and the other generates uniform gradients. Each participant generates a matrix of predictions for
4 objects by 2 features. The columns of these matrices can be classified as decaying (D), uniform (U) or
other (O). A column is classified as decaying if the first entry is greater than the last entry and if no
entry exceeds the entry in the previous row. A column is classified as uniform if all entries are iden-
tical, and all remaining columns are classified as “other”. Since the intervention fixes the value of f, for
the mouse, only the predictions for the remaining three values are used when classifying the second
column. Depending on the classifications of its two columns, the matrix for each participant is as-
signed to one of nine possible categories. Counts for these categories are shown in Fig. A.19. The most
common pattern for the observation task is DD, which indicates that inferences about both f; and f,
decay over the tree. 19 out of 32 participants produced this response, and the mean response for this
group of 19 is shown in Fig. A.19. The counts for the intervention task reveal two common responses.
12 participants generated DD responses, and eleven generated UU responses. Average responses
across these two groups are shown in Fig. A.19.

The responses of the UU group in Fig. A.19b are consistent with the model predictions in Fig. A.18b
but the responses of the DD group are not predicted by any of the models. One possible explanation is
that participants in the DD group recognized that the situation described is more complex than a
simple intervention. The intervention task describes an intervention (earlier in the day the mouse is
injected with f,) and an observation (the mouse tests positive for f,). If participants assume that
any foreign enzyme is quickly broken down, the positive test result provides some evidence that f,
is naturally present in the mouse’s bloodstream, and therefore that the mouse is likely to have f;
and that the rat is likely to have f,. Interpreting the task in this way is possible because some time
elapses between the injection and the test result, and removing this time interval would allow a clea-
ner test of how participants reason about interventions. As described in the main text, however, the
time interval was deliberately introduced in order to set up the cover story for the counterfactual
tasks.

Appendix B. Modeling details

The SC model makes use of a functional causal model F that captures causal relationships between
features. Fig. B.20 shows the structures F that were used to generate the training cards for each exper-
iment and to model our experimental data.
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