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Abstract

Cooperative communication plays a fundamental role in theories of human-human
interaction–cognition, culture, development, language, etc.–as well as human-robot
interaction. The core challenge in cooperative communication is the problem of
common ground: having enough shared knowledge and understanding to suc-
cessfully communicate. Prior models of cooperative communication, however,
uniformly assume the strongest form of common ground, perfect and complete
knowledge sharing, and, therefore, fail to capture the core challenge of cooperative
communication. We propose a general theory of cooperative communication that
is mathematically principled and explicitly defines a spectrum of common ground
possibilities, going well beyond that of perfect and complete knowledge sharing, on
spaces that permit arbitrary representations of data and hypotheses. Our framework
is a strict generalization of prior models of cooperative communication. After
considering a parametric form of common ground and viewing the data selection
and hypothesis inference processes of communication as encoding and decoding,
we establish a connection to variational autoencoding, a powerful model in modern
machine learning. Finally, we carry out a series of empirical simulations to support
and elaborate on our theoretical results.

1 Introduction

The cooperative communication problem is a problem among two agents; their goal is to find a pair
of plans that successfully map beliefs to communicative acts and back. This problem is fundamental
in two-party interaction, whether human-human, human-machine, or (expectantly) machine-machine
interaction. In human-human interaction, cooperative information sharing has long been viewed as a
foundation of, for example, human language (Frank and Goodman, 2012; Goodman and Stuhlmüller,
2013), cognitive development (Bonawitz et al., 2011; Jara-Ettinger et al., 2016), and cultural evolution
(Tomasello, 1999). In human-machine interaction, this problem’s appearance is, of course, more
recent, but still its significance has been observed in, for instance, social robotics (Fisac et al., 2017),
machine teaching (Zhu, 2015, 2013), reinforcement learning (Hadfield-Menell et al., 2016; Ho et al.,
2016), and deep learning (Laskey et al., 2017). Researchers have proposed a number of models of
cooperative communication (Shafto and Goodman, 2008; Frank et al., 2009; Shafto et al., 2012; Yang
et al., 2018) and, most recently, mathematical formalizations that enable the unification and analysis
of prior models (Wang et al., 2020).

The major challenge for any two agents in cooperative communication is having enough shared
understanding to successfully communicate, a problem known as common ground (Clark et al., 1991).
Because meaning is inferred from communicative acts, each agent must take into account what the
other knows. So models of cooperative communication must make assumptions about the form and
strength of common ground. Despite the impossibility of knowing exactly what another knows,
prior models of cooperative communication uniformly assume omniscient agents (Wang et al., 2020).
Ironically, this assumption with respect to common ground trivializes cooperative communication.

⇤Equal contribution.
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In this work, we propose a theory of cooperative communication that is mathematically principled
and models a spectrum of common ground possibilities. This newly defined spectrum goes well
beyond that of perfect and complete knowledge sharing and understanding. We formulate the cooper-
ative communication problem under assumptions of common ground as a (family of) constrained
optimization problem(s). In particular, we define different forms and strengths of common ground
as different constraints on a general (family of) optimization objective(s). We draw a connection
between cooperative communication and variational autoencoding notionally by viewing the data
selection and hypothesis inference processes that define communication as encoding and decoding
and formally through a variational approximation of our model. Our model is a strict generalization
of previous models of cooperative communication, and it is set on arbitrary data and hypothesis
spaces, allowing for arbitrary representations of data and hypotheses.

2 Theory

Communication is an ordered pair of processes between two agents, a teacher T and a learner L, who
communicate an arbitrary set of hypotheses H by way of an arbitrary set of data D. The teacher, by
definition, selects data to represent hypotheses, and the learner infers hypotheses from the teacher’s
selected data, all while taking into account shared knowledge, called common ground. Of course, a
teacher can only represent hypotheses as well as they understand them, and, thus, a teacher naturally
comes with a “prior” on hypotheses: a probability measure ⌫ on H . Similarly, a learner naturally
comes with a “prior” on data: a probability measure µ on D, as a means of representing their relative
understanding of data. In preparing to communicate, therefore, each seeks a probability measure ⇡ on
a joint data-hypothesis space D ⇥H–a communication plan–that probabilistically couples data and
hypotheses, formalizing how well data and hypotheses represent one another. The communication
plan depends on the aforementioned priors and is subject to the teacher’s and learner’s assumptions
about each other, part of their common ground.
Definition 2.1 (Common Ground). Common ground is a pair of sets of probability measures on
D⇥H , i.e., a pair of sets of communication plans: (P⌫

T
,PL

µ
) 2 2

⇧⌫ ⇥2
⇧µ , where ⇧⌫ and ⇧µ denote

the sets of communication plans with hypothesis marginal ⌫ and data marginal µ.

Common ground, in turn, is a collection of all of the choices our agents have for their communication
plans, accounting for their experience and understanding of data and hypotheses as well as their
knowledge of each other.

We propose modeling the problem of cooperative communication under common ground, of identify-
ing “good” communication plans, as a constrained minimization problem of a cost functional defined
on pairs of communication plans:

min
(⇡T ,⇡L)2P⌫

T⇥PL
µ

CC✏,�(⇡T ,⇡L), (2.1)

where, for any ✏, � � 0, the functional CC✏,� : P(D ⇥H)⇥ P(D ⇥H) ! R [ {±1} is

CC✏,�(⇡T ,⇡L) := KL(⇡T |⇡L) + (✏� 1)KL(⇡T |µL ⌦ ⌫T ) + �KL(µT |µL),

over a pair of feasible sets, P⌫

T
for the teacher and PL

µ
for the learner. Here µi and ⌫i denote the

data marginal and hypothesis marginal of the joint probability measure ⇡i respectively, for i = T, L.
Moreover, KL(· | ·) is the Kullback–Liebler divergence (or relative entropy).

By finding a pair of plans that minimize the aforementioned cost on the product of these feasible sets,
our agents are cooperatively identifying plans that they can use to communicate with respect to the
assumed common ground captured by the size, structure, and elements of the feasible sets. Notice
that the smaller the product of the feasible sets which define their common ground, the stronger the
assumptions our agents make about one another.
Remark 2.2. How our agents come to determine a common ground pair is an important independent
and antecedent problem to that which our model solves. We propose a framework which allows our
agents to 1. rigorously define common ground that isn’t perfect and complete, the first such rigorous
definition, and 2. with common ground established, define and find optimal communication plans.
Remark 2.3. Furthermore, given a communication plan in this generality, many possible choices of
how say data might be chosen to represent a hypothesis h exist. For example, if looking for a single
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d, the mean of the conditional distribution over data given h might do. This leads to an important and
subsequent problem. What is the best way to utilize optimal communication plans to communicate
once they are in hand? (Cf. Remark 3.3 below.)

If P⌫

T
\ PL

µ
is non-empty, for example, our framework models situations in which agreement is

possible, where agreement corresponds to the possibility that an optimal pair of communication
plans consist of a single communication plan paired with itself, that is, the teacher and learner select
the same communication plan in minimizing CC✏,�. On the other hand, if P⌫

T
\ PL

µ
is empty, our

framework models situations in which only approximate agreement is possible.

The two parameters ✏ and � weigh the relative importance of the three terms defining our cost
functional. The first term measures disagreement between the teacher and learner; the further apart
these two probability measures are, or, in other words, the more disagreement between the teacher and
learner there is, the higher the communication cost. The second term, as we shall see, delineates three
regimes and quantifies how uniformly the teacher might choose to represent different hypotheses as
probability measures over data with respect to the learner’s prior on data. The third term measures
how far the teacher’s induced posterior on data is from the learner’s prior on data; the further apart
these two probability measures on data are, the higher the communication cost.

Observe that CC✏,�(⇡T ,⇡L) is increasing as a function of either ✏ or � when all of the other terms
are fixed. The first term in the definition CC✏,� is non-negative and vanishes if and only if ⇡T = ⇡L.
Likewise, the third term in the definition CC✏,� is non-negative and vanishes if and only if µT = µL.
If ⇡T = ⇡L, then, trivially, µT = µL. In other words, CC✏,�(⇡T ,⇡L) � (✏� 1)KL(⇡T |µL ⌦ ⌫T ),
with equality if and only if ⇡T = ⇡L. No matter the strength or form of common ground, we know
that µL = µ and ⌫T = ⌫ for all feasible ⇡T and ⇡L. Thus, over any pair of feasible sets,

CC✏,�(⇡T ,⇡L) � (✏� 1)KL(⇡T |µ⌦ ⌫), (2.2)

with equality if and only if ⇡T = ⇡L. As mentioned, therefore, we find three general situations, when
considering the common ground pair (⇧⌫

,⇧µ).

If ✏ > 1, the coefficient ✏� 1 is positive. So taking KL( · |µ⌦ ⌫) as small as possible then minimizes
the right-hand side in equation (2.2). Note that KL( · |µ ⌦ ⌫) is non-negative and strictly convex.
Thus, for all ✏ > 1, CC✏,� over ⇧⌫ ⇥⇧µ is minimized by the unique minimizer of KL( · |µ⌦ ⌫) in
⇧

⌫

µ
:= ⇧

⌫ \⇧µ, which is µ⌦⌫, paired with itself. Indeed, for any ⇡ 2 ⇧
⌫

µ
, if we take ⇡T = ⇡ = ⇡L,

equality is attained in (2.2), and the right-hand side of (2.2) is equal to zero at µ⌦ ⌫ 2 ⇧
⌫

µ
. In turn,

without our agents making more assumptions about one another (than that their priors are known),
they will simply choose to behave uniformly with respect to the other’s prior. The teacher will
select data in the same way for every hypothesis: according to the learner’s prior on data. Similarly,
the learner will infer hypotheses in the same way for all data: according to the teacher’s prior on
hypotheses.

When ✏ < 1, the first and third terms in the definition of CC✏,� compete with the second term.
In particular, any admissible pair (⇡T ,⇡L) for which KL(⇡T |µ ⌦ ⌫) = +1 and KL(⇡T |⇡L) +
�KL(µT |µ) < 1 would minimize CC✏,� over a common ground pair. An interpretation of this
is a reflection of the importance of the teacher and learner using as much information about each
other as possible beyond their priors, to maximize KL(· |µ⌦ ⌫), over some version of approximate
agreement, which corresponds to the finiteness of KL(⇡T |⇡L) + �KL(µT |µ).
When ✏ = 1, and taking ⇡T = ⇡ = ⇡L for any ⇡ 2 ⇧

⌫

µ
minimizes CC✏,� over ⇧⌫ ⇥ ⇧µ. Thus, in

this regime, agreement is sufficient for cost minimization.

2.1 Common Ground via Variational Approximation

Here we consider parameterized families of probability density functions as approximations of
common ground pairs, thereby producing a variational approximation of our general cooperative
communication framework. This is a means of representing one manner through which our agents
might attempt to disambiguate optimal communication plan pairs (by making stronger assumptions
with respect to common ground, our agents may decrease the size of the set of optimal communication
plan pairs) as well as resolve tractability issues (even if ⇡T had probability density function PT , it still
may be intractable). In particular, we let P✓ denote a probability density function approximation of
⇡T . Similarly, we let P� denote a (probability density function) approximation of ⇡L. The parameter
✓ is for the teacher and the parameter � is for the learner. As a byproduct, we gain a simple but
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striking connection to variational autoencoding. In this scheme, the teacher’s and learner’s priors ⌫
and µ must have probability density functions. They will be denoted by g and f respectively.

Specifically, we define variational cooperative communication under common ground as the following
minimization problem: for D,H 2 {Rn

, JnK : n 2 N} and ✏, � � 0,

min
(P✓,P�)2Pg

✓⇥P�
f

L✏,�(P✓, P�). (2.3)

Here the loss functional L✏,� is defined on pairs of probability density functions on D ⇥H by

L✏,�(P✓, P�) :=

Z
�P✓(d, h) log f

�
(h | d) + ✏KL(P✓ | f� ⌦ g✓) + �KL(f✓ | f�),

and common ground is given by a pair of sets of parameterized probability density functions (Pg

✓
,P�

f
);

again, f = f(d) and g = g(h) are the learner’s and teacher’s prior probability density functions
respectively. Also, fj and gj denote the data and hypothesis marginals of Pj respectively, for
j = ✓,�. Moreover, in general, for instance, we set f�

(h | d) := P�(d, h)/f�(d) if f�(d) 6= 0 and
f
�
(h | d) := 0 otherwise. Hence, P�(d, h) = f

�
(h | d)f�(d).

As soon as a communication plan is determined by a probability density function, it admits a decom-
position as the product of conditional probabilities and a prior. For example, since common ground,
at minimum, requires that all of the teacher’s feasible communication plans have hypothesis marginal
g, the only variability within admissible plans comes from the induced conditional probabilities,
g
✓
(d |h) := P✓(d, h)/g(h) if g(h) 6= 0 and g

✓
(d |h) := 0 otherwise. In turn, we make the following

definitions.
Definition 2.4 (Conditional Teaching Plan). A conditional teaching plan is the family of induced
conditional probabilities {g✓(d |h)}h2H determined from a teacher’s communication plan in Pg

✓
.

Definition 2.5 (Conditional Learning Plan). A conditional learning plan is the family of induced
conditional probabilities {f�

(h | d)}d2D determined from a learner’s communication plan in P�

f
.

While, at first glance, L✏,� looks to be defining a different minimization problem than CC✏,�, even
after restricting CC✏,� to measures defined by probability density functions, it does not.
Theorem 2.6. For any ✏, � � 0, and any pair of probability density functions (PT , PL) on
D ⇥H , which determine a pair of probability measures (⇡T ,⇡L), we have that CC✏,�(⇡T ,⇡L) =

L✏,�(PT , PL)�H(gT ), where gT denotes the hypothesis marginal of the probability measure deter-
mined by PT and H denotes the Boltzman–Shannon entropy functional.2

As gT represents the teacher’s prior on H for the communication plan PT (or ⇡T ), which is equal
to g by common ground, variational cooperative communication defined by (2.3) is equivalent to
cooperative communication defined by (2.1) when (2.1) is restricted to communication plans defined
by probability density functions and the teacher’s prior on hypotheses is denoted by g (rather than ⌫).

2.1.1 Cooperative Communication as Variational Autoencoding

Variational autoencoding, broadly speaking, is a probabilistic framework in which one looks to
represent a space X by way of a lower dimensional space Z. Each space is equipped with a
probability density function, and the goal is to find a family of probabilistic encoders {q(z |x)}x2X ,
probability density functions on Z, one for each x 2 X , and a family of probabilistic decoders
{p(x | z)}z2Z , probability density functions on X , one for each z 2 Z, such that the induced
marginal on X of the joint probability density function on X ⇥ Z determined by the prior on Z

and the probabilistic decoders is a “good” approximation of the prior on X .3 These encoders and
decoders are typically restricted to live in parameterized families of probability density functions,
Gaussian, for example.

2 All proofs can be found with the Supplementary Materials.
3 Ideally, given a family of probabilistic decoders, the probabilistic encoders would be the x-induced

conditional probabilities determined from the joint probability density function on X ⇥Z formed by the product
of the decoders and the prior on Z. These conditional probabilities are assumed to be intractable. So they need
to be approximated, and the notion of “good” here has to be appropriately defined. In turn, the term variational
is used slightly differently in autoencoding and cooperative communication.
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Note that if we replace X by H , Z by D, and “represent” above by “communicate”, we see that the
broad idea behind variational autoencoding is exactly the broad idea behind (variational) cooperative
communication.4 Indeed, teaching is none other than encoding and learning is none other than
decoding (if we consider that data are compressed representations of hypotheses), and common
ground is none other than, given that the teacher’s prior and learner’s prior are fixed, a restriction
on the admissible conditional teacher and learning plans (encoders and decoders are forced to live
within some parameterized family). Moreover, the loss functional defining (2.3) is the same one used
in the variational autoencoding framework by Hao and Shafto (2023) to measure the “goodness” of
the approximation of the induced marginal on X and the prior on X .

2.2 Previous Models

Previous models of cooperative communication assume omniscient agents and discrete data and
hypothesis spaces. They define common ground, which we call strong common ground, as a triplet
(µ, ⌫,M) of two probability vectors and a matrix. These objects and the explicit manner in which
they interact to determine cooperative communication will be illustrated shortly.

Here we demonstrate two things. We show strong common ground provably trivializes the problem of
cooperative communication from a problem of two agents to a problem of one agent communicating
with theirself. Simultaneously, we show how previous models of cooperative communication can be
seen as special cases of our framework. Previous models of cooperative, from language (Frank and
Goodman, 2012; Goodman and Stuhlmüller, 2013), cognitive development (Jara-Ettinger et al., 2016),
robotics (Fisac et al., 2017; Ho et al., 2016), and machine learning (Zhu, 2015, 2013), were unified as
approximations of entropic Optimal Transport by Wang et al. (2020). Thus, our demonstration simply
involves recovering their entropic Optimal Transport framework for cooperative communication
framework by appropriately constraining our model (or strengthening common ground assumptions).

Wang et al. (2020) formalize the cooperative communication problem as a pair of Boltzman–Shannon
entropy regularized Optimal Transport problems on a discrete data-hypothesis space D ⇥H . More
precisely, for i = T, L, they consider the minimization problems:

min
Pi2⇧⌫

µ

{hci, Pii � ✏H(Pi)}

where ✏ � 0, cT (d, h) := sT (d) � log ⇢(h | d) and cL(d, h) := sL(h) � log ⌘(d |h), respectively,
given vectors sT and sL, a non-negative (|D|⇥ |H|)-matrix M with row normalization ⌘(d |h) and
column normalization ⇢(h | d): ⌘(d |h) (h) = M(d, h) = ⇢(h | d)'(d), for '(d) :=

P
h
M(d, h)

and  (h) :=
P

d
M(d, h), and µ and ⌫ are probability vectors of length |D| and |H| respectively; ⇧⌫

µ

denotes the set of probability (|D|⇥ |H|)-matrices with column and row sums µ and ⌫ respectively.

The unique minimizers of these two problems are the teacher’s and learner’s optimal communication
plans respectively of the cooperative communication problem under the strong common ground triplet
(µ, ⌫,M). Explicitly, the matrix M determines two cost matrices, one for the teacher and one for
the learner through column and row normalization respectively; and the vectors µ and ⌫ denote the
learner’s prior on data and the teacher’s prior on hypotheses respectively.

First, note that Boltzman–Shannon entropy regularized Optimal Transport is equivalent to relative
entropy (or KL-divergence) regularized Optimal Transport, with respect to the matrix µ⌦ ⌫ when µ

and ⌫ are the two marginal constraints, which, with a cost matrix, determine an Optimal Transport
problem. So Wang et al. (2020) cooperative communication can be rewritten as, for i = T, L,

min
Pi2⇧⌫

µ

{hci, Pii+ ✏KL(Pi |µ⌦ ⌫)} , (2.4)

with ci, µ, ⌫, and ⇧
⌫

µ
defined exactly as before.

Second, since cost matrices in a relative entropy regularized Optimal Transport problem can be freely
“shifted” without affecting the optimal plan (Nutz, 2022), we can replace sT with any |D|-length
vector and sL with any |H|-length vector. In particular, we could consider � log' and � log as

4 In autoencoding, the space to be encoded X is called the data space and the space to be decoded Z is called
the latent space. In cooperative communication, the space to be encoded H is called the hypothesis space and
the space to be decoded D is called the data space. Thus, the name data is given to the opposite objects in these
two worlds. We point this out explicitly to hopefully avoid any confusion that may arise from these conventions.
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replacements for sT and sL respectively, and replace the cost matrices ci with the single cost matrix
� logM . Similarly, by adding log' to � logM , the cost matrix � logM defines the same entropy
regularized Optimal Transport problem as the cost matrix c(d, h) := � log ⇢(h | d).
Remark 2.7. In turn, cooperative communication under strong common ground, while formulated as
two (relative) entropy regularized Optimal Transport problems, is actually just one. This is a rigorous
manner in which to see that previous models of cooperative communication work under the strongest
possible assumption of common ground wherein there is effectively only one agent.

In our formulation, if we take D and H to be discrete, PL

µ
= {⇢(h | d)µ(d)}, P⌫

T
= ⇧

⌫

µ
, and � = 0,

we recover the a posteriori single (from the omniscient teacher’s perspective) entropy regularized
Optimal Transport problem that governs cooperative communication in prior work. These restrictions
provide us with one manner in which to recover previous models of cooperative communication from
our model. Another way is to pass to unbalanced entropy regularized Optimal Transport (Séjouré
et al., 2023), by taking P⌫

T
= ⇧

⌫ and � = k 2 N, and then take the limit as k tends to infinity.

Theorem 2.8. Let D and H be discrete spaces, fix ✏ � 0, and consider the common ground
pair (⇧⌫

, {⇢(h | d)µ(d)}) for some (|D| ⇥ |H|)-row stochastic matrix ⇢ with positive entries. Let
(Pk, ⇢(h | d)µ(d)) be an optimal pair for (2.3) with � = k 2 N. Then, Pk converges to P1, and P1
minimizes (2.4), for i = T with cT = � log ⇢.

This manner of recovering previous models of cooperative communication takes advantage of the
ability to decompose a communication plan into a conditional plan and a prior (cf. Definitions 2.4
and 2.5), a major practical benefit when working with the variational model Equation 2.3.

3 Experiments

In this section, we implement a further approximation scheme to study Equation 2.3 empirically.
We sample initializations for a gradient descent based optimization scheme of L✏,�, in PyTorch via
Adam (Kingma and Ba, 2015), over (Pg

✓
,P�

f
) from a pair of probability distributions ⇥ and ⇤ on

the parameters ✓ and �. We treat every parameter independently and assume that ⇥ and ⇤ are the
product of independent uniform distributions over an interval [�p, p], one for each parameter. Sample
initializations empirically explore common ground and the entire space of admissible communication
plans. Averaging over the limiting pairs of communication plans, one for each initialization, yields
an approximation to a minimizing pair of communication plans of our loss functional over the given
common ground pair. In particular, we consider a multilayer perceptron-based form of common
ground in which ✓ and � are neural network parameters. (We provide the full details regarding
experimental setup and implementation in the Supplementary Materials.) We conduct experiments
under various priors f and g and compare different initializations. We also analyze our model
through variations on the coefficients ✏ and �. These experiments are carried out in fully discrete and
semi-continuous settings. As is typical, we represent discrete spaces as collections of one hot vector.

3.1 The Fully Discrete Setting

Here we assume that m = |D| and n = |H|, and we fix our common ground pair as follows: Pg

✓
=

{g✓(d |h)g(h)} with g
✓
(d |h) = Cat(d |↵✓(h)) and g(h) = Cat(d |↵) and P�

f
= {f�

(h | d)f(d)}
with f

�
(h | d) = Cat(d |��(h)) and f(d) = Cat(d |�). As mentioned previously, ✓ and � are

parameters of neural networks. For simplicity, we assume that m = n. So ↵ = � = (1/m, . . . , 1/m).

First, let us recall the cooperative index of two communication plans (Yang et al., 2018):
CI(P✓, P�) :=

1
n

P
i,j

g
✓
(di |hj)f

�
(hj | di). It ranges between 0 and 1; the higher the better. The

cooperative index is an established measure of the effectiveness of communication in fully discrete
cooperative communication, and so, it is an important metric to consider. While we have already
demonstrated that the cooperative communication as studied by Yang et al. (2018) is contained within
our framework, we elaborate on this further in the Supplementary Materials.

In Figure 3.1, we study the effects of various initialization with respect to values of p, metrics (`1 and
cooperative index), and values of ✏. Under the common ground pair fixed in this section, we find a
single unique minimizing pair for all ✏ > 1 and � � 0. Hence, we do not consider any ✏ > 1.
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The two values of p considered here are 0.0625 and 0.5. The first choice is referred to as a uniform
initialization in Figure 3.1 and corresponds to the lower row; the second choice is referred to as a
sparse initialization in Figure 3.1 and corresponds to the upper row.5

Columns (a) and (b) consider variability with respect to the size of our spaces m with ✏ = 1 and
� = 0. With this choice of coefficient pair and our fixed common ground pair, we find that minimizing
pairs are formed by a single matrix paired with itself. Hence, � plays no role, and taking � = 0 is
equivalent to taking � > 0. Column (a) plots changes in the pairwise `1-distances between these
single matrix minimizers as a function of m. Column (b) plots changes in the cooperative index of
these single matrices paired with themselves, again, as a function of m. We sample each of the two
distributions (uniformish and sparse) 50 times to obtain 50 initializations of the conditional teaching
and learning plans. In particular, for each m 2 {5, 10, 20, 40, 80}, the error bar plots the sample
standard deviation of the resulting `1-distances/cooperative indices and the central dot the mean of
these resulting `1-distances/cooperative indices, for that m.

Columns (c) and (d) consider variability with respect to values of ✏, which ranges between 0 and 1

with a step size of 0.1 and m = 20. The two distributions (uniformish and sparse) here are sampled
100 times to obtain 100 initializations of the conditional teaching and learning plans. Here our
gradient descent limits are pairs of distinct matrices, whose `1-difference is plotted in column (c).
Column (d) plots their cooperative indices. The error bars here are the standard errors of the means
and the central dots are the means as determined by our 100 initializations.

Figure 3.1: Columns from left to right: (a) pairwise `1-difference with ✏ = 1 as function of m; (b) CI with ✏ = 1
as function of m; (c) pairwise `1-norm as a function of ✏; (d) CI as a function of ✏. We take (a) as a verification
of the existence of multiple minimizers when ✏ = 1 even under rather a structured form common ground (if not
the pairwise `1-differences would all be 0). From (b), we see that sparse initializations yield higher cooperative
indices. From (c) and (d), display trends of between the `1-distances between the teacher’s and learner’s optimal
plans as ✏ increases. Since ✏ = 1 suggests a regime changes, this trend is roughly decreasing for `1-distances
and increasing for cooperative index when ✏ < 1.

3.2 The Semi-Continuous Setting

Here we assume that |D| = m and H = Rn, and we fix our common ground pair to be
Pg

✓
= {g✓(d |h)g(h)} with g

✓
(d |h) = Cat(d |↵✓(h)) and g(h) =

P
i
�iN(h |µi,⌃

2
i
) and

P�

f
= {f�

(h | d)f(d)} with f
�
(h | d) = N(u�(d),�

2
�
(d)) and f(d) = Cat(d |↵); ✓ and � are

parameters of neural networks. More specifically, g is a mixture of l Gaussians, for l = 1, 3, 5, with

5 When p = 0.0625, for every h, g✓( · |h) at initialization will be close to a uniform distribution because
outputs of shallow neural networks are small given small weights and biases. But if p = 0.5, these initial
conditional probabilities will become sparse.
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mean µi and variance ⌃
2
i

sampled from the standard Gaussian, for each i 2 {1, . . . , l}. We assume
that m = 100 and ↵ = (0.01, 0.01, ..., 0.01). We begin with two definitions.

Definition 3.1 (Reconstruction). For h 2 H , we let ĥ :=
1
m

P
i
g
✓
(di |h)µ�(di), where µ�(di) is

the mean of f�
(h | di), denote its reconstruction. The average reconstruction loss of a set of samples

{hi}i2I is the sample mean of the `1-difference between hi and its reconstruction: 1
|I|

P
i
khi� ĥik`1

Definition 3.2 (Data Activation). A data d is activated by a hypothesis h if d = argmax
D
g
✓
( · |h).

The data activation percentage is the ratio of activated data (for some h) over all data.6

Remark 3.3. These two definitions provide one solution to the problem raised in Remark 2.3; this
solution comes from variational autoencoding.

Figure 3.2: Variation in initialization anal-
ysis. As p increases, average reconstruction
loss increases and data activation percentage
decreases.

In Figure 3.2, we restrict our attention to case where g

is a mixture of 3 Gaussians, ✏ = 1, and � = 10. We
sample 5 different initializing weights and biases for both
the conditional teaching and learning plans. The value
of p starts at 0.01 and increases by 0.01 until 0.8. We
plot changes in average reconstruction loss and activation
percentage as a function of p. The error bars correspond
to the initialization sample standard deviation and central
dots correspond to the initialization sample means. As
p increases, standard deviation also increases, consistent
with reduced common ground.

In Figure 3.3, we fix p = 0.0625 and sample 10 initializa-
tions of our neural network parameters. We consider three
cases corresponding to the number of Guassians which de-
termine g. Error bars and central dots display the standard
deviation and mean of these sampled initializations with
respect to either average reconstruction loss or activation percentage.

Figure 3.4 plots reconstructions and data activation. The coefficient ✏ and � are picked by the
best reconstruction effectiveness, and an initialization is sampled at random with p = 0.0625 (cf.
Figure 3.3). The size of the sample set I is 6000. Column (a) plots samples in blue and their
reconstructions in orange. Column (b) again plots samples in blue. The orange dots now are the
means of f�

( · | d)s for activated data d; the green dots are the means of f�
( · | d)s for non-activated

data d. Column (c) partitions each sampled hypothesis according to the mean associated with the
data it activates. These means, colored in orange in (b), are colored in orange and outlined in black
here. These plots suggest that after optimizing in ✏ and �, successful cooperative communication,
defined through reconstruction coverage and continuity, is possible.

4 Related Work

Our framework generalizes a broad class of models that have been proposed in linguistics (Frank and
Goodman, 2012), cognitive development (Jara-Ettinger et al., 2015), robotics (Hadfield-Menell et al.,
2016), education (Gweon et al., 2010), cognitive science (Shafto and Goodman, 2008; Shafto et al.,
2014), and machine learning (Zhu, 2015). In linguistics, the original Rational Speech Act theory
papers (Frank and Goodman, 2012; Goodman and Frank, 2016) describe applications of pragmatic
inference in human language. These papers are widely cited and have been applied to problems in
emergent language, vision and language navigation, cultural evolution, multi-agent RL, generating
and following instructions, image captioning, and machine translation. In cognitive development,
Naive Utility Calculus (Jara-Ettinger et al., 2015) is also widely cited and has applications to
inverse reinforcement learning and scientific models of children’s behavior. In robotics, Cooperative
Inverse Reinforcement Learning (Hadfield-Menell et al., 2016) and Pedagogic-Pragmatic Inference
(Fisac et al., 2017) have been proposed to explain value alignment and have been applied to deep
reinforcement learning for aligning with human preferences, multi-agent systems, and learning from
demonstration. In education and cognitive science, the Pedagogical reasoning model explains learning

6 Even if the set argmaxD g
✓( · |h) contains more than one element, PyTorch will only return one. Any plot

that considers data activation suffers from this artifact. Hence, the equality.
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1 Gaussian 3 Gaussians 5 Gaussians

Figure 3.3: Rows from top to bottom: (a) V-shaped relationship between ✏ and average reconstruction loss
across all � with vertex shifting to the right as g grows in complexity; (b) Near independence of data activation
percentage with respect to �; (c) Stratification of average reconstruction loss by ✏ with a phase transition around
✏ = 1, roughly independent of �; (d) Stratification of data activation percentage by ✏. From (c) and (d), for ✏
under a threshold that increases with the complexity of g, we see a roughly negative linear association between
activation percentage and reconstruction loss.

from a teacher (Shafto and Goodman, 2008; Shafto et al., 2014), has been widely cited, and applied
to understanding a broad array of experimental findings, informal human learning, and automated
tutoring. In machine learning, the machine teaching approach is primarily a theoretical object, but has
been highly influential in spawning iterative machine teaching and data poisoning approaches (Zhu,
2013, 2015). All of these models have been shown to be instances of entropic Optimal Transport
(Wang et al., 2020), which our model generalizes, and so, they fail to consider imperfect common
ground; using our theory, each of these works has an avenue to expand into a more realistic realm
(see Section 2.2).
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Figure 3.4: Columns from left to right: (a) Sample hypotheses versus reconstructions; (b) Sample hypotheses
versus mean of activated data; (c) Sample hypotheses partitioned by mean of activated data. From (a), we see
that hypotheses are well-reconstructed for all g. From (b), we see that not all data are activated. From (c), we see
continuity of data selection with respect to hypotheses.

Recent proposals have used neural networks to offer an algorithmic perspective on cooperative
communication. Early work by Andreas and Klein (2016) on neural pragmatics assumes, rather than
derives, the encoder-decoder connection. Liu et al. (2017) formulate a teaching problem for learners
who are unaware of the teacher’s intent, and, thus, not cooperative, and Liu et al. (2018) assume
teachers query learners to learn their beliefs. Fan et al. (2018); Wu et al. (2018) formulate teaching as
a (reinforcement) learning problem. Yuan et al. (2021) consider teacher-aware learning in continuous
spaces via neural networks, but do not formalize or study the common ground problem, and limit
recursive reasoning between the teacher and learner to a single step.

Variational autoencoding (Kingma and Welling, 2014) is a generative probabilistic model enhanced
by deep learning. Like variational autoencoding, we utilize neural networks to model conditional
distributions. However, there is an important perspective shift when considering cooperative commu-
nication. Since cooperative communication is a model of two agents working together, both families
of conditional probabilities are equally important, whereas in variational autoencoding the decoding
process carries more emphasis, being generative.

5 Conclusions

We formalize common ground in cooperative communication and, thus, build a robust and accurate
mathematical description of a fundamental aspect of the cooperative communication problem in
two-party interaction. Our approach is an advance over prior theories which, through strong common
ground, effectively assume away the most significant challenge for cooperative communication.
Rooted in viewing the data selection and hypotheses inference processes that define communication
as probabilistic encoding and decoding and drawing a connection between cooperative communication
and variational autoencoding, this approach offers new theoretical and computational gains in the
study of human-human and human-machine cooperation.
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