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Abstract
Model-based clustering techniques, including inference in Dirichlet process mixture models, have difficulty when
different dimensions are best explained by very different clusterings. We introduce cross-categorization, an unsu-
pervised learning technique that overcomes this basic limitation. Based on MCMC inference in a novel nonpara-
metric Bayesian model, cross-categorization automatically discovers the number of independent nonparametric
Bayesian models needed to explain the data, using a separate Dirichlet process mixture model for each group
in an inferred partition of the dimensions. Unlike a DP mixture, our model is exchangeable over both the rows
of a heterogeneous data array (the samples) and the columns (new dimensions), and can model any dataset as
the number of samples and dimensions both go to infinity. We demonstrate the efficiency and robustness of our
algorithm, including experiments on the full Dartmouth Health Atlas dataset without any preprocessing, showing
that it finds veridical causal structure.

1 Introduction

Clustering techniques are widely used in data analysis, for problems of segmentation in industry, exploratory analysis in science,
and as a preprocessing step to improve performance of further processing (e.g. in distributed computing and in data compression).
However, as datasets grow larger and noisier, the assumption that a single clustering (or distribution over clusterings) can account
for all the variability in the observations [1] becomes less and less realistic. From a machine learning perspective, this is an
unsupervised version of the feature selection problem: different subsets of measurements should, in general, induce different
natural clusterings of the data. From a cognitive science and artificial intelligence perspective, this issue is reflected in work that
seeks multiple representations of data instead of a single monolithic representation [2]. As a limiting case, a robust clustering
method should be able to ignore an infinite number of uniformly random or perfectly deterministic measurements.

The assumption that a single nonparametric model must explain all the dimensions is partly responsible for the accuracy issues
Dirichlet process mixtures often encounter in high dimensional settings. DP mixture based classifiers (e.g. via class conditional
density estimation [3]) highlight the problem: while a discriminative classifier can assign low weight to noisy or deterministic (and
therefore irrelevant) dimensions, a generative model must explain them. If there are enough irrelevancies, it ignores the dimensions
relevant to classification in the process. Combined with slow MCMC convergence, these difficulties have inhibited the use of
nonparametric Bayesian methods in many applications.

To overcome these limitations, we introduce cross-categorization, an unsupervised learning technique for clustering based on
MCMC inference in a novel nested nonparametric Bayesian model. Our model can be viewed as a Dirichlet process mixture, over
the dimensions (or columns), of Dirichlet process mixture models over sampled datapoints (or rows). Conditioned on a partition
of the dimensions, our model reduces to an independent product of DP mixtures, but the partition of the dimensions (and therefore
the number and domain of independent nonparametric Bayesian models) is also inferred from the data. Standard feature selection
boils down to the case where the partition of dimensions has only 2 groups. We use MCMC because both model selection [4] and
deterministic approximations [5] seem intractable, due to the combinatorial explosion of latent variables (with changing numbers
of latent variables as the partition of the dimensions changes).

2 Model and Experiments

The hypothesis space captured by our model is super-exponentially larger than that of a Dirichlet process mixture, with a very
different structure than a Hierarchical Dirichlet Process [6]. Our generative process, viewed as a model for heterogeneous data
arrays with N rows, D columns of fixed type and values missing at random, can be described as follows:

1. For each dimension d ∈ D:

(a) Generate hyperparameters ~λd from an appropriate hyper-prior.
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(b) Generate the model assignment zd for dimension d from a Chinese restaurant process with hyperparameter α (with
α from a vague hyperprior).

2. For each group g in the dimension partition {zd}:
(a) For each sampled datapoint (or row) r ∈ R, generate a cluster assignment zg

r from a Chinese restaurant process with
hyperparameter αg (with αg from a vague hyperprior).

(b) For each cluster c in the row partition for this group of dimensions {zg
d}:

i. For each dimension d, generate component model parameters ~θd
c from an appropriate prior and ~λd.

ii. For each data cell x(r,d) in this component (zzd
r = c for d ∈ D), generate its value from an appropriate likelihood

and ~θd
c .

Our model encodes a very different inductive bias than the IBP [7], discovering independent systems of categories over heteroge-
neous data vectors, as opposed to features that are typically additively combined. It is also instructive to contrast the asymptotic
capacity of our model with that of a Dirichlet process mixture. The DP mixture has arbitrarily large asymptotic capacity as the
number of samples goes to infinity. Put differently, it can model any distribution over finite dimensional vectors given enough data.
However, if the number of dimensions (or features) is taken to infinity, it is no longer asymptotically consistent: if we generate
a sequence of datasets by sampling the first K1 dimensions from a mixture and then append K2 >> K1 dimensions that are
constant valued (e.g. the price of tea in China), it will eventually be forced to model only those dimensions, ignoring the statistical
structure in the first K1. In contrast, our model has asymptotic capacity both in terms of the number of samples and the number of
dimensions, and is infinitely exchangeable with respect to both quantities. As a consequence, it is self-consistent over the subset
of variables measured, and can thus enjoy considerable robustness in the face of noisy, missing, and irrelevant measurements or
confounding statistical signals. This should be especially helpful in demographic settings and in high-throughput biology, where
noisy (or coherently covarying but orthogonal) measurements are the norm, and each data vector arises from multiple, independent
generative processes in the world.

Due to space constraints, we omit a detailed description of our MCMC inference algorithm and discuss all results in figure captions.
Our algorithm was derived by starting with a general-purpose MCMC algorithm for probabilistic programs [8] and specializing
three of the kernels. It scales linearly per iteration in the number of rows and columns (assuming a constant upper bound on the
number of groups in all Chinese restaurant processes), and includes inference over all hyperparameters.
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Figure 1: (left) An assessment of convergence, showing inferred vs ground truth joint score for ∼1000 MCMC runs (200 iterations
each) with varying dataset sizes (up to 512 by 512, requiring ∼1-10 minutes each) and true dimension groups. A strong majority
of points fall near the ground truth dashed line, indicating reasonable convergence; perfect linearity is not expected, partly due to
posterior uncertainty. (right) A preliminary comparison of the learning curves for cross-categorization and one-vs-all SVMs on
synthetic 5-class classification, averaged over datasets generated from 10 dimensional Bernoulli mixtures.

Future work will explore (1) the detailed mechanisms by which the latent variables introduced by our method (above those in
a regular DP mixture) actually improve mixing performance, (2) massively parallel implementations exploiting the conditional
independencies in our model, and (3) semisupervised or transductive prediction experiments, benchmarked against state-of-the-art
discriminative methods. Because our method is essentially parameter free (e.g. with improper uniform hyperpriors), robust to noisy
and/or irrelevant measurements generated by multiple interacting causes, and supports arbitrarily sparsely observed, heterogeneous
data, it may be broadly applicable in exploratory data analysis. Additionally, the performance of our MCMC algorithm suggests
that our approach to nesting latent variable models in a Dirichlet process over dimensions may be applied to generate robust, rapidly
converging, cross-cutting variants of a wide variety of nonparametric Bayesian techniques.
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Figure 2: Results from 50 samples on a dataset of animals and their features, similar to [2]. (left) The coassignment matrix
for dimensions, where cij = Pr[zi = zj ], i.e. the probability that dimensions i and j share a common cause (and therefore
are modeled by the same Dirichlet process mixture). Labels show the consensus dimension groups (probability > 0.75). These
reflect attributes that share a common cause and thus covary, while the remainder of the matrix captures correlations between these
discovered causes (e.g. mammals rarely have feathers or fly, ungulates are not predators, and so on). Each dimension group picks
out a different cross-cutting categorization of the rows (e.g. vertebrates, birds, canines, ...; not shown). (right) One sample of one
dimension group and its cross-cutting clustering, by habitat (air, land, and sea dwellers, plus outliers).

“QoC Scores”
5 categories

Composite 
Quality Score

AMI Score

CHF Score

Pneumonia
Score

“Long Term Care”
7 categories

Medicare $ / Decedent 
on LTC

Medicare $ / Decedent 
on Ambulance

“Skilled Nursing”
18 categories

SNF Beds / 1000 
Decedents

SNF Days / Decedent

“Specialist vs. PC”
10 categories

Ratio of Specialist to
 PC FTEs

Ratio of Specialist to 
PC Visits/ Decedent

“Home Care”
5 categories

Medicare $ / Decedent 
on Home Care

Home Health Agency 
Visits / Decedent

“Hospice Care”
11 categories

Medicare $ / Decedent 
on Hospice Care

Percent of Deaths 
Occurring in Hospice

Hospice Days / Decedent

“Equipment”
7 categories

Medicare $ / Decedent 
on Durable Equipment

Durable Equipment 
Copay / Decedent

“Misc. Spending”
9 categories

Medicare $ / Decedent 
on Outpatient Care

Medicare $ / Decedent 
on Other Care

Medicare Part B $ / 
Decedent on Procs.

Medicare Part B $ / 
Decedent on Imaging

Medicare Part B $ / 
Decedent on Tests

Medicare Part B $ / 
Decedent on Other

Total Copay / Decedent

Physician Services 
Copay / Decedent

Figure 3: Results on the Dartmouth Health Atlas, which contains 4273 hospitals by 74 variables, including quality scores and
various spending measurements. We analyzed the data (∼1 hour for convergence) with no preprocessing or missing data imputation.
Each box contains one consensus dimension group and the number of categories according to that group. In accordance with custom
statistical analyses [9], we find no causal dependence between quality of care, hospital capacity, and spending, though each kind of
measurement results in a different clustering of the hospitals. We also recover the cost structure of modern hospitals (e.g. increased
long term care causes increased ambulence costs, likely due to an increase in at-home mishaps). Standard clustering methods miss
most of this cross-cutting structure.
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