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In the article we argue that past Bayesian approaches that

model children’s learning from data are missing an important

element — the role of other people in generating that data. We

propose that children take the origin of data into account when

learning, which can be understood through ideal observer

analyses of the social situation. Moreover, when observing

evidence, children are not just learning from others, but also

about others. We review recent literature suggesting that

children can make inferences about the knowledge and goals

of the individual selecting the data and use this knowledge to

bolster learning from this evidence.
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Conventional wisdom often points to the myriad ways in

which children have unique limitations and cognitive

capacities from adults — children may be lacking the

knowledge, skills, and logical reasoning abilities to per-

form as competently as their parents [1–8,61]. However,

children must be powerful learners. They enter the world

with few expectations about objects, events, others and

themselves, but within a year they begin express compli-

cated concepts like ‘all done’, ‘uh oh’, or ‘mine’. To

explain such remarkable learning, researchers have pro-

posed elements of the learning toolkit including statistical

learning mechanisms [9–11] and the ability to integrate

these statistics with inductive constraints [12�,13–
16,17�,18,60].

One way to understand how even very young children can

attend to the evidence in their environment and — from

this data — rapidly update their beliefs, is through
www.sciencedirect.com 
computational models based on ideal observer analyses.

Ideal observer analyses answer the question, what is the

learning problem that is being solved? The answer is

formalized as a computational model that assumes ideal

performance. In cognitive development, the learning

problems being solved are things like learning language

and learning the causal structure of the environment. The

computational models formalize learning as Bayesian

inference over structured representations. Bayesian infer-

ence captures ideal learning in the face of uncertainty and

noise, and structured representations captures the under-

lying regularities of, for example, the grammar of lan-

guage or the causal structure of the environment that

must be inferred. The result of this marriage is ‘Theory-

based Bayesian’ models of learning [19�].

In recent years, myriad studies have demonstrated how

ideal observer approaches can be used to describe how

children might learn language [20] and develop causal

beliefs [21,22]. Although these models provide important

insight into how we can capture the remarkably sophisti-

cated learning in childhood, we suggest that they miss an

important aspect of learning: learning from others. Evi-

dence does not appear in a social vacuum; children often

learn from observing others. When a word is uttered, it

comes from the mouth of a person trying to communicate

a concept. When a light switch is flicked, it is almost

always because a person wants there to be light.

Computational models of learning have demonstrated the

importance of considering social information in language

acquisition (e.g. [23]), social referencing (e.g. [24]), and

imitation (for review see, [25]). These past approaches

use social information as an additional source of evidence,

independent from other streams of information. Here, we

focus on how social inferences shape the interpretation of

evidence. The critical contribution of socially generated
data — that people are part of the generative process — is

that it can lead to even stronger inferences and more rapid

learning. We will stress is that children are not only paying

attention to the evidence (e.g. the light switch in the up

position and the light being on), but that children are

paying attention to the people that are demonstrating

those events (e.g. that even if the person tries, but fails, to

flip the light switch up, there was a reason that they tried

to flip it). We will discuss recent probabilistic models that

include this socially generative component. These mod-

els relate the knowledge and goals of a demonstrator to

actions they choose, and formalize how these purposeful

actions can influence the interpretation of the data being
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demonstrated. We will present research suggesting that

children can make inferences about the knowledge and

goals of the individual selecting the data and use this

knowledge to bolster learning from this evidence.

Intrinsic to our proposal is the idea that children are able

to represent and reason about others’ beliefs. These are

non-trivial abilities, combining Theory of Mind and plan-

ning capabilities, and the development of these skills may

extend into middle childhood (e.g. [26,27]). However,

many of the types of social learning we discuss do not

necessarily require competency with false beliefs; many

other forms of social learning based on reasoning about

others’ beliefs and goals can be observed much earlier in

development [28–30], and even infants may understand

false-beliefs [31].

Strong sampling in word learning
Word learning is arguably the canonical case of social

learning. It is also famously wrought with uncertainty

[32]: How should one infer the precise extension of a

word’s meaning given a few observations of a label? When

a scene is labeled for a learner, the possible meanings are

endless, and yet even children are likely to infer that the

speaker intends something like ‘rabbit’, and not ‘rabbits

and also tomatoes but not squirrels’. Words are also

learned with very few positive examples and rarely any

negative examples; words can carve up the world in

overlapping categories; and multiple words can be used

to express similar concepts [33–37]. How might children

accomplish such a feat of inductive prowess? As Quine

[32] famously noted, ‘Language is a social art’; the lear-

ner’s reasoning depends on making inferences about the

speaker’s intensions. Might such intuitions leverage in-

ductive inference?

Theory-based Bayesian models can begin to offer a

solution to the riddle of induction and a precise way to

characterize the contribution of social inferences in word

learning [17�,18]. Imagine learning about a concept, such

as ‘dalmation’ by observing someone randomly labeling

objects from the world, and in each case stating whether

the drawn object is an instance of the concept or not.

Given these examples, the learner must infer which of

many possible hypotheses is most likely to account for the

data produced by these haphazard observations.

Of course, this is not how people use language. Intuitive-

ly, we know that, in general, labeling any given object as

‘not a dalmation’ provides nearly no information about

what ‘dalmation’ actually is. Instead, we can consider

language learning as a different sort of problem, one in

which people almost exclusively label objects with their

correct label. The examples of ‘dalmation’ may still be

haphazard, but they are all dalmations. Thus, when a

learner sees three dalmations drawn from a box and

labeled with a novel word, she can reason about its
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extension via a sort-of counterfactual logic: ‘what are

the chances that I would have seen exactly these three

objects if the concept I’m learning is ‘dalmations’, ‘dogs’,

or ‘animals’?’ The narrower the concept fits to the exam-

ples, the more likely the set will have been drawn. One is

most likely to see three dalmations randomly sampled

from a box only containing dalmations, less likely to see

such evidence if the box contains all dogs, and least likely

if the box contains all animals.

Computationally, researchers have modeled these differ-

ent potential selection processes. The former, called

weak sampling, provides only the information present

in the object-label pairing. This would lead to strong

limitations on learning because the sampling process —

random sampling — is unrelated to the true concept.

Indeed, mathematical demonstrations formalize the idea

that, if this were true, language would not be learnable

[35]. In contrast, strong sampling formalizes the idea that

if a person intends to communicate ‘dalmation’, they will

choose dalmations. This does not completely solve the

problem: if the person wishes to communicate ‘animal’

they may also choose a dalmation. However, if as a

language learner we aggregate over multiple labelings,

then the probability of someone choosing 3 dalmations at

random from all animals is very, very small; dalmation

must mean ‘dalmation’ [17�,18].

Learning from teaching
Another especially compelling case for social learning

comes from teaching. According to an ideal observer

analysis, learning from teaching (‘pedagogical learning’)

differs from standard learning in one critical way — the

data that the learner observes are chosen by a knowledge-

able and helpful person, not selected at random. That is,

in pedagogical sampling the learner assumes that the

teacher is not merely sampling examples from within

the concept, but is purposefully sampling the best possi-

ble data in order to help the learner rapidly converge on

the correct concept given the learner’s current beliefs.

Thus, the learner not only asks herself ‘what are the

chances I would have observed these examples, given this

category’ but she asks ‘what are the chances that the teacher
would have chosen these examples for me if this was the true

category.’ A knowledgeable and helpful teacher would be

especially unlikely to provide an overly restrictive set of

examples, such as three Dalmations, if the concept to be

conveyed was really something broader, such as ‘dogs’.

Thusly, pedagogical sampling allows the learner make

even stronger inferences about the data than strong

sampling would warrant [38,39�].

These pedagogical inferences also extend beyond word

learning to other kinds of causal reasoning. For example,

imagine you are a child, and a person walks into the room

with a complex looking novel toy. The person says, ‘This

is my toy. I’m going to show you how it works’ then pulls a
www.sciencedirect.com
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non-obvious yellow knob, eliciting a squeak, before hand-

ing the toy to the child. What should a child infer about

the number of causal functions of the toy? Contrast this

with a situation in which the person says, ‘Look at this toy

I just found’ and, as they are handing the toy to the child,

they accidentally pull the knob, eliciting a squeak, before

handing the toy over to the child. What should the child

infer about the number of causal functions of the toy in

this other situation? It seems obvious that, in the second

case, the child can infer that while there is evidence for

one function, there could be more functions. However, in

the first case, by reasoning about why the teacher chose to

demonstrate only one function, the child can infer that

there is in fact only one function: if there were more

functions, a knowledgeable and helpful teacher would

have chosen to demonstrate those too. Recent research

using this and related paradigms have shown that, before

they are arriving at formal schooling, 4- and 5-year-old

children can use the knowledge and intent of the teacher

to draw stronger inferences than are afforded by the data

alone [40�,41]. Indeed, parallel research in education has

shown similar implications of evidence selection on chil-

dren’s learning of the mathematical concept of equality

[42–46].

Recent computational research has formalized a frame-

work for modeling why other people’s purposeful data
Figure 1

PT(d|h)  ∝ PL(h|d )

Depiction of the learner’s inferences (on the left) that depend on their belief

reason about the beliefs of the learner in order to generate the most effectiv
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selection affects learning [39�]. Consider the case of

learning from teaching, where the data are chosen by a

knowledgeable and helpful informant (‘pedagogical rea-

soning’; [38,47]). The model captures the deceptively

simple intuition that a teacher will choose the evidence

that tend to increase the learner’s belief in the correct

hypothesis; it makes precise the implications of that for

learners who expect this sort of purposeful selection of

data. Formally, we can describe the probability of a

teacher selecting data given a hypothesis, PT(djh), and

the relationship of the teacher’s choice to the learner’s

posterior beliefs after observing the data, PL(hjd). To

capture the intuition that a teacher will choose data that

tend to lead the learner to the correct hypothesis, we

state: PT(djh) 1 PL(hjd). Learning from teaching is

similar to standard learning based on Bayes rule, where

the sampling process is modified to take into account

the fact that the data are chosen by the teacher: PL(hjd) 1
PT(djh)PL(h) (see Figure 1).

The model has generated a variety of testable predictions

about how learning from a teacher should differ from

situations in which the observed data is generated by

accidental or other random selection methods. Indeed,

the model was the inspiration for the novel toy experi-

ment described above ([40�]; see also [41]), and explains

why children have difficulty learning the concept of
PL(h|d )  ∝ PT(d |h)P(h)
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equality [42–46]. Even children’s causal inferences are

sensitive to the goals and knowledge of the person

generating the data, and such inferences can be modeled

with this framework.

Epistemic trust
If, as indicated by research on direct instruction, learners

are going to treat people as knowledgeable and helpful,

then it is necessary that one consider the alternative: some

people are not knowledgeable nor helpful; they can even

be deceptive. Research on epistemic trust investigates

whom children choose to provide information. The liter-

ature has focused on a host of superficial cues including

accuracy [48], familiarity [49], consensus [50], and accent

[51] to name a few. There is robust evidence that children

by at least the age of 4 (and on some tasks much earlier,

e.g. [52]) children are discerning about whose information

they will endorse and whom they will ask.

Building on the learning from others framework, probabi-

listic models of learning about others provide a framework

for understanding children’s remarkable proficiency, and

the developmental changes in their abilities, to assess

who to trust for information. Shafto et al. [53�,54,55]

formalized a model that inferred, based on the evidence

provided by an informant, whether the informant was

knowledgeable or not and helpful or deceptive. The

choice of who to trust is then an inference about which

informant’s information is most likely to be correct.

Modeling three representative studies from the literature,

they showed that 4-year-old’s ability to track informant

reliability [48], to balance familiarity and recent accuracy

[49], and reason about consensus [50], was explained by

reasoning about the informant’s knowledge and intent.

The model also revealed developmental changes in rea-

soning. In contrast with 4-year-olds’ behavior, 3-year-

olds’ behavior was best explained by reasoning only about

informants’ knowledge, assuming that informants are

always helpful (see also [56–58]).

A convergent line of research has shown that trust is about

more than simply tracking informants’ accuracy. Consis-

tent with the model, Gweon et al. [59] presented 6- and 7-

year-old with informants who either demonstrated all of

the functions of a toy or only one of the functions of a toy.

Prior to the demonstration, children had been allowed to

explore the toy, and they therefore knew how many

functions the toy had. After the demonstration children

rated the demonstrator on their effectiveness. Results

showed that children rated informants who omitted infor-

mation lower than those who demonstrated all of the

functions, and lower than other informants who demon-

strated the same number of functions on an identical toy

with only one function.

The probabilistic model of epistemic trust thus formalizes

social learning as a problem of simultaneous learning about
Current Opinion in Behavioral Sciences 2016, 7:95–100 
the world and about informants. Literature on epistemic

trust typically focuses on cases where you know the

answer [48–50] and literature on children’s pedagogical

reasoning tends to focuses on the case where you know

about the informant [40�,41]. Probabilistic modeling of

joint inferences about the world and informants provide a

framework for modeling learning from and about infor-

mants as a dynamic, interactive Theory-based process

[57].

Summary
Developmental science has suggested that children — far

from limited, broken versions of adults — are in fact

powerful learners capable of remarkable feats of infer-

ence. Ideal observer approaches, instantiated in Theory-

based Bayesian models, have argued that children suc-

ceed by probabilistic inference over structured knowl-

edge representations. We have argued that these

approaches are missing an important element — other

people.

Research from word learning and pedagogical reasoning

shows that children take the origin of data into account

when learning. Given the exact same evidence, they draw

different conclusions. And, these inferences can be un-

derstood through ideal observer analyses of the social
situation. People choose evidence purposefully — in

word learning, by choosing to label instances of the

concept, and in pedagogical reasoning, by tailoring the

amount of information provided to the complexity of the

situation — and children’s behavior is consistent with

models that reason about the implications of people’s

choices for learning.

Moreover, when observing evidence, children are not just

learning from others, but also about others. Research on

epistemic trust has shown that young children select

informants based on the goodness of the information that

they provide. And, the same models that explain chil-

dren’s learning from pedagogically selected data have

been extended to explain children’s learning about the

informants selecting the data.

A consensus is emerging in which children’s understand-

ing of other people plays a key role in explaining chil-

dren’s powerful learning abilities. This consensus draws

strength from the combination of empirical results and

computational models derived from ideal observer anal-

yses of social learning. There are many important open

questions, such as whether and how social ideal observer

analysis should inform our understanding of children’s

actions and choices and practices in learning sciences

more generally. These will require new research and

more elaborate models. In the interim, we can conclude

that to understand power of children’s learning, it is

important to investigate it in a social context.
www.sciencedirect.com
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