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Abstract

Phylogenomic analysis of large sets of molecu-
lar characters, primarily DNA and proteins, provides
great opportunities to estimate and understand impor-
tant evolutionary processes. However, molecular phy-
logenies inferred from individual loci often differ. This
incongruence among phylogenies can be the result of
systematic error, but can also be the result of differ-
ent evolutionary histories. We propose a new method,
based on Bayesian hierarchical clustering and poste-
rior probability, to measure congruence between genes
and to identify sets of congruent loci within which the
genes or proteins share identical evolutionary history.
We demonstrate the method on a sequence data of 10
nuclear genes from 20 ray-finned fish (Actinopterygii)
species.

1 Introduction

The availability of genome-scale data provides
unprecedented opportunities for phylogenetic analysis
(phylogenomics). However, molecular phylogenies in-
ferred from individual loci may conflict with each other
(incongruence). The incongruence between genes can
be the result of random and systematic errors in phy-
logenetic tree reconstruction, but can also be caused
by the underlying biological processes, including pop-
ulation genetic processes [9], within-species genetic re-
combination (e.g., chromosomes crossover and gene
conversion) [20] and horizontal gene transfer [14].

Techniques for assessing the significance of phylo-
genetic incongruence are particularly important to sys-
tematic biology in a genome-scale. Due to various het-
erogeneities caused by the biological processes, how-
ever, measuring phylogenetic incongruence has been
a statistically and computationally challenging task.
Nevertheless, several methods have been proposed
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(Planet [25] provided an excellent review). An intu-
itive framework for measuring incongruence is the in-
congruence length difference (ILD) test [5], initially
developed in a parsimony context, and later adapted
to a distance-based method [32]. The test statistic is

defined by d = LC −
∑N

i=1 Li where Li and LC denote
the lengths of the most parsimonious trees calculated
for the ith individual loci and for the combined loci,
respectively. However, studies have suggested that the
test performs poorly when substantial rate or pattern
heterogeneity exists among sites [3, 4].

In a maximum likelihood context, Huelsenbeck
and Bull [12] described a method based on likelihood
ratio test with the ratio d = L1/L0 where L0 is the
maximum likelihood assuming all the genes sharing
identical trees while allowing rate heterogeneity to
vary across sites, and L1 is the maximum likelihood as-
suming all the genes undergone different trees and dif-
ferent evolutionary rates. The null distribution for the
test is calculated using bootstrapping resampling tech-
nique. Based on hierarchical clustering and the likeli-
hood ratio test, Leigh et al. [18] described a method
to identify congruent subsets of genes. However, there
are several concerns with a maximum-likelihood and
bootstrap based approach. To calculate P -values using
nonparametric bootstrap, the maximum likelihood es-
timation must be repeated typically 100 to 1000 times.
It therefore can be prohibitively slow [15]. In addition,
the empirical test of Hillis and Bull [11] suggested that
the bootstrap proportion varied too much among repli-
cate data sets to be used as a measure of repeatability.

Bayesian approach usually models uncertainty
in a more interpretable style than maximum like-
lihood approach. Although Bayesian analysis have
been successfully applied to estimate phylogeny, to
our knowledge, very few of these works can explic-
itly test incongruence between genes or identify con-
gruent gene subsets. Most of these analyses assumed
that all genes evolved under the same phylogenetic



tree [13, 15, 16, 24]. Suchard et al. [29] proposed a
Bayesian hierarchical model which allowed partitions
to have different trees. However, it did not explic-
itly measure the degree of incongruence among genes.
At the same time, it assumed that partitions were
known in advance and thus failed in identifying con-
gruent gene subsets. Ané et al. [2] analyzed each gene
separately using Bayesian analysis and constructed a
gene-to-tree map which is, in turn, used to estimate
the posterior probability of pairwise gene dissimilar-
ity. A drawback of this method is that gene trees,
exclusively inferred separately, may not resolve well.

Motivated by the shortcomings of existing meth-
ods, we propose a Bayesian model to measure incon-
gruence between genes and to identify sets of congru-
ent loci within which genes share identical evolution-
ary history. From a Bayesian perspective, the method
provides a more interpretable and accurate estima-
tion of congruence through the posterior probability of
genes being congruent. Based on Bayesian hierarchical
clustering [10], the method provides a fast determinis-
tic alternative to Markov Chain Monte Carlo (MCMC)
in approximation of the posterior probabilities.

2 Methods

The analysis begins with aligned molecular se-
quence data Y over N loci, primarily DNA or protein
sequences. Data Y = (Y1, · · · , YN ) consist of N dis-
joint alignments with Yn (n = 1, · · · , N) correspond-
ing to loci n. Data Yk = (Yk1, . . . , YkNk

) denote a
subset of Y (Yk ⊆ Y) consisting of Nk disjoint align-
ments, where each Ykg (g = 1, . . . , Nk) refers to some
Yn (n = 1, . . . , N).

The first hypothesis, denoted H0, states that the
interesting alignments are congruent. The alternative
hypothesis, denoted H1, states that at least some part
of the interesting alignments are incongruent to the
others. According to Bayes’ theorem, the posterior
probability of the Nk markers in Yk being congruent
given the alignment is

p(H0|Yk) =
πkp(Yk|H0)

πkp(Yk|H0) + (1 − πk)p(Yk|H1)
(1)

The larger p(H0|Yk) is, the more confidence we have
in H0 to believe that the Nk markers are congruent.

The algorithm start with measuring the degree of
congruence for all pairs of loci, and the pair with the
highest posterior probability (denoted r) is selected.
The value r is compared with a threshold p, (p = .5
in this work), if r > p, the test continues, treating
this pair as a congruent gene cluster consisting of two
genes. If r ≤ p, none of the pairs are congruent and the
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Figure 1: Hierarchical clustering algorithm using posterior
probability of gene clusters being congruent as merging crite-
ria. a, b, c, d denote markers.

test ends. The algorithm is shown in Figure 1, where
congruent information between pair of genes or gene
clusters are represented. In Section 2.1, the formal
definition of topological congruence and branch length
congruence are described. In Section 2.2, a greedy
algorithm is proposed to estimate the likelihood quan-
tities involved in the evaluation of the posterior prob-
ability defined in Equation 1.

2.1 Likelihood of Congruence

For an aligned set of sequences Yk =
(Yk1, . . . , YkNk

) over Nk loci, topological congruence
defines all Nk genes as having identical evolution topol-
ogy but with various branch lengths and substitution
processes. Thus the marginal likelihood that the Nk

markers are topologically congruent given alignments
Yk is

p(Yk|H0) =

∫ Nk
∏

g=1

p(Ykg |τk, βkg, Θkg)p(τk, βkg , Θkg)

d τk, βkg, Θkg

(2)

where τk is the topology shared by these Nk genes, βkg

is the branch length of sequence Ykg , and Θkg is the
substitution model of sequence Ykg.

For branch-length congruence, all Nk genes have
identical branch lengths in addition to identical topol-
ogy, so the marginal likelihood that these Nk loci are
branch-length congruent given the alignments Yk is

p(Yk|H0) =

∫ Nk
∏

g=1

p(Ykg|τk, βk, Θkg)p(τk, βk, Θkg)

d τk, βk, Θkg

The rest of the paper focuses on topological congru-
ence. However, the same algorithm can be applied
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Figure 2: (a) An example tree with three genes. Tree-
consistent partitions are a|b|c and ab|c. (b) A portion of a tree
showing Ti and Tj are merged into Tk.

to branch-length congruence with minor modifications.
In Section 2.3, the form of the likelihood function given
a single gene and the strategies on prior distribution
are presented. The evaluation of the marginal likeli-
hood (Equation 2) is discussed in Section 2.4.

2.2 Likelihood of Incongruence

A main difficulty when evaluating the marginal
likelihood of congruence comes from the hypothesis’
combinatorial nature. For example, assume we have
three markers (a, b, c). Hypothesis H1, stating that at
least some of the markers are incongruent given the
alignments, allows four possibilities: {a|b|c, ab|c, ac|b,
a|bc}, where symbol | separates incongruent markers
from congruent markers. Thus the marginal likelihood
of H1 given sequence alignments Ya, Yb, Yc is

p(Ya, Yb, Yc|H1) = w1p(Ya|H0)p(Yb|H0)p(Yc|H0)

+ w2p(Ya, Yb|H0)p(Yc|H0) + w3p(Ya, Yc|H0)p(Yb|H0)

+ w4p(Yb, Yc|H0)p(Ya|H0)

where wi (i = 1, . . . , 4) is the weight for each case and
∑4

i=1 wi = 1. A brute force estimation of p(Yk|H1)
requires enumerating all possible incongruent cluster-
ings over these Nk markers. Notice that the number
of possible clusterings over n elements is the nth bell
number: Bn+1 =

∑n
k=0

(

n
k

)

Bk ,which prohibits the
use of the brute force approach. Instead, we follow
the approximation approach developed by Heller and
Ghahramani [10] and restrict to clusterings that par-
tition the genes in a manner consistent with the sub-
trees of the merging algorithm described in Figure 1.
For example, if three genes a, b, c are merged according
to Figure 2(a), then we only consider two clusterings:
{a|b|c, ab|c}. So,

p(Ya, Yb, Yc|H1) ≈
{

πp(Ya, Yb|H0)+

(1 − π)p(Ya|H0)p(Yb|H0)
}

p(Yc|H0)

More generally, assume gene cluster k is merged from
two mutually exclusively subsets of genes i and j. That

is, Yk = Yi ∪ Yj and Yi ∩ Yj = ∅. Equipped with the

restricted hypothesis, which we denote H̃1, the likeli-
hood of incongruence is

p(Yk|H1) ≈ p(Yk|Tk, H̃1) = p(Yi|Ti)p(Yj |Tj) (3)

and

p(Yk|Tk) = πkp(Yk|H0) + (1 − πk)p(Yk|Tk, H̃1) (4)

where Ti, Tj, Tk are binary trees expressing the merg-
ing processes as shown in Figure 2(b). Restricting to
tree-consistent clusterings and assigning different prior
probability to them, the method provides a reasonable
approximation to the brute force approach which av-
erages over all possible clusterings.

2.3 Likelihood Function and Priors

All sites from an individual gene sequence (e.g.,
an aligned sequence Ykg) are assumed to evolve under
identical topology. Assuming the same substitution
rate across sites, however, can be unrealistic. A more
nuanced model would allow using one set of substitu-
tion parameters for each site. This, however, results
in too many parameters to estimate given a limited
number of observations. A more practical approach is
to model the rate variation using a probabilistic dis-
tribution. We use the discrete-gamma model [31].

In the discrete-gamma model, a finite mixture
model is used to model across-site rate heterogene-
ity. All sites within a gene are assumed to share a
substitution pattern (based composition or transition-
transversion rate), but fall into several classes with
different rates. Thus, a site with rate rc and pattern
Q has the substitution-rate matrix rcQ, with rc calcu-
lated using a gamma function. As it is not known to
which rate class each site belongs, we average over all
the site classes. Incorporating this into the likelihood
function, given a sequence alignment Ykg of gene kg,
we have

p(Ykg |τk, βkg, Θkg)

=

Skg
∏

s=1

C
∑

c=1

p(Ykgs|τk, βkg, rcQkg)p(rc)
(5)

where Ykgs denotes the sth site in sequence Ykg , Skg is
the number of sites in Ykg , and Qkg is the substitution
pattern shared by all sites within Ykg . The summation
is a weighted average over all C site-rate classes. p(rc)
is the prior probability that a site’s rate falls in rate
class c. For equally likely rate classes, p(rc) = 1/C.

For the general time-reversible (GTR) model of
nucleotide substitution, the matrix is normally written
as the product of a symmetric matrix R representing



substitution rate, and a diagonal matrix Π represent-
ing a stationary distribution:

QGTR
kg = RkgΠkg =









· akgπkgC bkgπkgA ckgπkgG

akgπkgT · dkgπkgA ekgπkgsG

akgπkgT dkgπkgC · fkgπkgG

ckgπkgT ekgπkgC fkgπkgA ·









Once the tree topology, branch lengths, and site-
specific rates are chosen, the likelihood at each site
(p(Ykgs|τk, βkg , rcQkg)) and the likelihood for each
gene (see Equation 5) are computed using Felsenstein’s
pruning algorithm [6].

The stationary distribution requires summation
to one and so is modeled by a Dirichlet prior distribu-
tion,

diag(Πkg) ∼ Dirichlet(αkg).

The tree topology is sampled from a multinomial dis-
tribution,

τk ∼ Multinomial(p1, . . . , pE).

where E = (2M − 5)!/2M−3(M − 3)!, pi (i =
1, . . . , E) is the probability of the ith topology be-
ing sampled over the E possible M -taxon topologies.
Without bias, these E topologies are assumed to be
equally probable, so pi = 1 (i = 1, . . . , E).

The prior information for branch lengths within
a gene is modeled by an exponential distribution with
an average branch length 1/λkg,

βkg ∼ Exponential(1/λkg).

The prior belief on a set of genes being congru-
ent is expressed using πk (as in Equation 1). πk = 0
expresses a strong belief that alignments in Yk are in-
congruent, while πk = 1 says they are congruent. The
Dirichlet process prior [1] is used to model the prior
belief. Assume a set of genes are partitioned into con-
gruent gene clusters of various sizes (here size means
the number of genes in a cluster). For a new gene
not in this set, a Dirichlet process prior, in general,
says that this new gene is more likely to be congruent
with gene clusters of larger size. Heller and Ghahra-
mani [10] proposed a prior for agglomerative cluster-
ing, which has similar property to Dirichlet Process
prior:

πk = 1 dk = η if Tk is a leaf node

πk = ηΓ(Nk)
dk

dk = ηΓ(Nk) + didj else

where η is the concentration hyperparameter.
In this work, αkg = (1, 1, 1, 1), λkg = 10 for all

k and g, and η = 0.5, though a Bayesian hierarchical
model can be easily built such that the uncertainty on
hyperparameters αkg , λkg , and η are incorporated into
the model.

2.4 Estimation of Marginal Likelihood

A key computation component of the model de-
scribed in Section 2.1 is the calculation of the marginal
likelihood defined in Equation 2, which is a highly vari-
able function over a high dimensional parameter space.
The integral is analytically intractable (e.g. due to
lack of conjugate priors), and the parameter space is
too high-dimensional for numerical integration. In this
work, the approach by Newton and Raftery [22] using
Monte Carlo sample from the posterior is used. No-
tice that marginal likelihood can be expressed as an
expectation with respect to the posterior distribution
of the parameters:

1

p(Yk|H0)
=

∫

p(Ωk|Yk)

p(Yk|Ωk)
dΩk = E

{

1

p(Yk|Ωk)

∣

∣

∣

∣

Yk

}

(6)

where Ωk = (τk, βkg, Θkg), g = 1, . . . , Nk are model pa-
rameters, and p(Yk|Ωk) are the likelihood function, as
indicated in Equation 2. From here the harmonic mean
identity can be used to approximate the marginal like-
lihood p(Yk|H0):

p̂(Yk|H0) =

{

1

S

S
∑

t=1

1

p(Yk|Ωt
k)

}

−1

(7)

where Ω1
k, . . . , ΩS

k are S samples drawn from the pos-
terior distribution p(Ωk|Yk).

MCMC has been widely used in phylogenetic in-
ference to sample model parameters [13, 15, 28]. The
approach in MRBAYES [13] is adapted in this work.
To draw from p(Ωk|Yk), the sampler uses a Metropolis-
within-Gibbs [30] algorithm that cycles through blocks
of model parameters within Ωk, updating them via a
Metropolis-Hastings proposal. For example, to sample
the substitution model parameters for the first mark-
ers in Yk, the acceptance probability is:

r = min

(

1,
p(Θ∗

k1)

p(Θk1)

p(Yk1|τk, βk1, Θ
∗

k1)

p(Yk1|τk, βk1, Θk1)

q(Θk1|Θ∗

k1)

q(Θ∗

k1|Θk1)

)

(8)

where Θ∗

k1 stands for the proposed values for the sub-
stitution model parameters. Simulated tempering [21],
also known as Metropolis-coupled MCMC [8], is used
to reduce the chance that Markov chain simulations
remain in the neighborhood of a single model for a
long period of time.

It is worth noting that estimation of marginal
likelihood remains a central problem in Bayesian in-
ference. The decision of using the harmonic mean es-
timator is due to its simplicity. However, the estimator
can have infinite variance. Raftery et al. [26] described
a stabilized version of the estimator. Gelman and



 

 

S
H

3P
X

3

pl
ag

l2

E
N

C
1

tb
r1

pt
rt

zi
c1

m
yh

6

G
ly

t

sr
eb

2

R
Y

R
3

SH3PX3

plagl2

ENC1

tbr1

ptrt

zic1

myh6

Glyt

sreb2

RYR3
−80

−70

−60

−50

−40

−30

−20

−10

0

Figure 3: The dendrogram shows the hierarchical clustering structure of genes based on their posterior probability of being congruent.
The square heatmap shows the congruence relationships between pairs of genes. The warmer the color is in a cell, the more congruent
the corresponding pair of genes are. The colormap shows values of posterior probability (in logarithm) represented by colors.

Meng [7] proposed path sampling which generalizes
the thermodynamic integration originated from theo-
retical physics and involves a sequence of intermediate
distributions bridging prior and posterior. Lartillot
and Philippe [17] applied thermodynamic integration
to phylogenetic analysis.

3 Results

The method proposed herein is used to estimate
the phylogeny relationships amongst ray-finned fish
(Actinopterygii) with 10 alignments of protein-coding
genes assembled by Li et al. [19]. Twenty species, out
of 52 ray-finned fish, are randomly selected, and mouse
(Mus musculus) is used as the outgroup to root the
phylogeny tree. Li et al. [19] defined one data block
for each codon position and each gene, yielding 30
data blocks (3 codon positions × 10 genes). For each
data block, substitution parameters (GTR + Γ) were
estimated using maximum likelihood and Bayesian in-
ference method. They defined the distance between
data blocks using their estimated substitution param-
eters. Then data blocks were clustered by hierarchi-
cal clustering with centroid linkage. As expected, the
three major clusters discovered by their method corre-
sponded exactly to codon positions. The trees inferred
from each individual gene by the Bayesian phyloge-
netic method (MRBAYES GTR+Γ) either are poorly
resolved star-like trees or exhibit obviously different
topology (data not shown here), indicating that a sys-
tematic way of combining these genes is desirable in
order to accurately analyze the data set.

The Bayesian topological congruence method
proposed herein is applied to identify congruent sets of

genes using a Dirichlet process prior with concentra-
tion parameter η = .5. From this test, four mutually
incongruent sets of genes were identified, containing 5,
3, 1, and 1 genes, respectively. The pairwise gene con-
gruence is shown in a square matrix in Figure 3. The
warmer (e.g., red is warmer than blue) the color is in
a cell, the more congruent the corresponding pair of
genes are. The colorbar maps color to values of pos-
terior probability (on a logarithmic scale). The degree
of congruence between genes ranges from extremely
congruent to extremely incongruent. Gene pairs such
as (plagl2, ENC1), (tbr1, ptrt) are very congruent,
with posterior probabilities near 1; gene pairs such as
(myh6, SH3PX3), (ENC1, myh6) are very incongru-
ent, with posterior probabilities smaller than e−50. It
also indicates that some genes, such as SH3PX3 and
myh6 are incongruent to most of the other genes.

Genes are further clustered into congruent sub-
sets, shown in a dendrogram in Figure 3. Branch
lengths in the dendrogram correspond to the poste-
rior probability of congruence between gene subsets
connected by the branch. The shorter the branch,
the more congruent they are. The cut point value is
p = 0.5. Branches having r ≤ 0.5 are in black and
r > 0.5 are in lighter colors. The tree shows two
main congruent subsets: set1=(plagl2, ENC1, tbr1,

ptrt, zic1) and set2=(RYR3, sreb2, Glyt). Notice that
although SH3PX3 are congruent to plagl2 and to tbr1,
it is not included in congruent set 1 since that merge
has the posterior probability r = e−67. This is also
indicated in the square matrix, where the first col-
umn shows that SH3PX3 is incongruent to ENC1 and
ptrt. Similarly, although myh6 is highly congruent
with RYR3, the gene is not included in congruent set 2
because the merge has posterior probability r = e−50.
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Figure 4: 50% majority-rule consensus trees inferred from congruent set 1 (a) and congruent set 2 (b). Posterior probabilities for
branches are indicated.

Bayesian phylogenies inferred from each of the
two congruent sets are shown in Fig. 4. Branches of the
50% majority-rule consensus tree from congruent set 1
have high posterior probability, providing strong sup-
port for the topology. The main branch with low prob-
ability is the pair (Anguilla rostrata, Elops saurus).
Although the 50% majority-rule consensus tree from
congruent set 2 has an overall similar topology as the
one from congruent set 1, its branches have relatively
low posterior probabilities. However, one interesting
result comes from analysis of congruent set 2. In
this set, there are three levels of ancestral nodes from
the Chriocentrus dorab group to the (Chanos chanos,

Notemigonus crysoleucas) group, while in congruent
set 1, Chriocentrus dorab and the (Chanos chanos,

Notemigonus crysoleucas) group share an immediate
common ancestor.

4 Discussion

Bayesian methods of multigene analysis corre-
spond to various ways of partitioning the genome [16,
23, 24, 27]. Gene topological congruence analysis can
be considered as partitioning genes according to the
underlying gene topology while allowing branch length
and substitution heterogeneity within a partition. To
infer gene partitioning based on topological congru-

ence, a mixture model is proposed:

p(z|Y) =
p(Y|z)p(z)

p(Y)
=

∏K
k=1 L(Yk|H0)p(z)

p(Y)
(9)

where, if N genes are clustered into K partitions, z =
(z1, . . . , zN), zi is the partition of the ith gene, and
L(Yk|H0) is the marginal likelihood integrating over
heterogeneous parameters, as defined by Equation 2
for topological congruence.

The posterior probability of multiple markers (for
example, three markers: a, b, c) being congruent given
the sequences are the posterior probability of them
being assigned into one partition:

p(H0|Y) =
∑

z ∈ Z
za = zb = zc

p(z|Y) (10)

where Z is the set of all possible clusterings over N
elements. Although MCMC inference algorithm has
been widely used for phylogenetic analysis, sampling
over the large sample space imposed by Equation 9 is
extremely computationally expensive.

The greedy agglomerative algorithm in Figure 1
can be considered as a deterministic alternative to es-
timating the mixture model (Equation 9) by a sam-
pling method such as MCMC [10]. However, it must
be noted that this method still does not scale well with
very large numbers of loci for two reasons. First, the



agglomerative algorithm (Figure 1) has a computation
time complexity of O(N2), where N is the number
of genes in the data set. Second, the merging crite-
rion still requires calculating the marginal likelihood
(Equation 2) using an MCMC sampler. For this rea-
son, the experiment reported in this work includes only
ten genes and twenty taxa, a data set smaller than
would be normally interesting to genome wide phylo-
genetic analysis.

In general, Bayesian phylogenomic analysis meth-
ods that account for evolutionary heterogeneity among
genes, including the algorithm described in this work,
can present significant computational challenges. One
solution is to devise parallelizable algorithms. It is
particularly interesting to point out that the algorithm
presented in this work is readily parallelizable. For ex-
ample, given three gene clusters i, j and k, the evalua-
tion of p(H0|Yi, Yj) and p(H0|Yi, Yk) are independent
and can therefore be computed in parallel by different
machines. This can significantly speed up the compu-
tation and allow much larger scale applications of the
algorithm.

5 Conclusion

Genomic scale data offers invaluable opportuni-
ties to solve difficult phylogenetic problems, but also
imposes enormous challenges for statistical and com-
putational methods [27]. The method proposed in this
work accounts for evolutionary heterogeneities and
identifies congruent gene subsets using Bayesian hy-
pothesis testing. The proposed method approximates
the posterior probability of genes being congruent in
a fast deterministic manner. A notable feature of the
method is that it is particularly suitable for parallel
computation. The test presented on the data set shows
that the model recovers interesting congruence struc-
ture among genes. Future work will explore applica-
tions of the model to more interesting genome wide
data.
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