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Abstract

Most clustering algorithms assume that all
dimensions of the data can be described by a
single structure. Cross-clustering (or multi-
view clustering) allows multiple structures,
each applying to a subset of the dimen-
sions. We present a novel approach to cross-
clustering, based on approximating the so-
lution to a Cross Dirichlet Process mixture
(CDPM) model [Shafto et al., 2006, Mans-
inghka et al., 2009]. Our bottom-up, de-
terministic approach results in a hierarchi-
cal clustering of dimensions, and at each
node, a hierarchical clustering of data points.
We also present a randomized approxima-
tion, based on a truncated hierarchy, that
scales linearly in the number of levels. Re-
sults on synthetic and real-world data sets
demonstrate that the cross-clustering based
algorithms perform as well or better than the
clustering based algorithms, our determinis-
tic approaches models perform as well as the
MCMC-based CDPM, and the randomized
approximation provides a remarkable speed-
up relative to the full deterministic approxi-
mation with minimal cost in predictive error.

1 INTRODUCTION

Standard approaches to clustering assume that there
is a single clustering that describes all of the data.
Consider, for example the Dirichlet process mixture
(DPM) model, a widely used model for density esti-
mation and for clustering. The model takes as input
a set of data points, and their values on a set of di-
mensions. For each data point, the DPM infers a la-
tent variable indicating an assignment of the data to
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a mixture component. A fundamental assumption un-
derlying this approach is that all of the dimensions of
the data are described from a single view, i.e., the data
points were generated by a single underlying DPM.

However, there are many cases in which a single view
does not describe all aspects of the data points. In
some cases, we might expect some dimensions to be de-
scribed by one model while others are merely “noise”.
More generally, any given data set may be generated
by multiple different models, each applying to subsets
of the observed dimensions. In these contexts, clus-
tering algorithms typically identify a single dominant
structure and the dimensions better explained by other
models appear to be weakly structured.

Cross-clustering (or multi-view clustering) relaxes the
single-DPM assumption, allowing the possibility that
a data set may have multiple different views. Con-
sider, for example, a generalization of the DPM,
the Cross Dirichlet Process Mixture model (CDPM)
[Shafto et al., 2006, Mansinghka et al., 2009]. This
model allows that a single data set may be composed
of data generated by multiple different DPMs. The
model therefore infers, for each dimension, a latent
variable indicating an assignment of that dimension
to a view, and w.r.t. each view, an assignment of
data points to mixture components of DPM. This pro-
vides the capability to separate structured features
from noisy features and the ability to identify cases
where different dimensions of the data are best de-
scribed by different DPMs. Because the CDPM is a
generalization of the DPM, this approach should lead
to improved predictive performance on previously un-
observed values. However, cross-clustering models ad-
mit a very large number of possible latent structures,
and their success depends on reliable, efficient infer-
ence algorithms.

In this paper, we propose Bayesian Hierarchical Cross-
Clustering (BHCC), a deterministic approach to ap-
proximate inference for a CDPM. We also propose
Randomized BHCC (RBHCC), a much faster alter-
native approximation to the CDPM. Building off the
work by Heller and Ghahramani [2005a], BHCC builds
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a hierarchical clustering of dimensions, where the pos-
terior probability of merging dimensions in different
views is estimated based on the marginal likelihood
that the data are generated by a DPM.

2 RELATED WORK

In addition to the work by Shafto et al. [2006], Mans-
inghka et al. [2009], there has been growing interest
in the problem of multi-view clustering. Rodriguez
et al. [2008] proposed a very similar approach which
they call the Nested Dirichlet Process. In terms of
other approaches, there are those that allow for two
views [Qi and Davidson, 2009, Gondek and Hofmann,
2004, Dang and Bailey, 2010], and those that allow
many views. Because we typically do not know how
many views there are a priori, approaches that allow
potentially many views, and infer the correct number
for a given data set are more appealing. Cui et al.
[2007] use a sequential approach, iteratively cluster-
ing in subspaces that are orthogonal to existing so-
lutions. Guan et al. [2010] propose a deterministic,
variational approximation to CDPM. Their model dif-
fers in that they use a DP prior on categories via the
stick-breaking construction. Unlike in their work, our
approaches result in hierarchical clusterings of dimen-
sions, which may be desirable in some situations. Ad-
ditionally, we provide results on real-world prediction
problems to provide objective validation for the ap-
proach.

3 Cross Dirichlet Process Mixture

Model

The problem of learning cross-cutting category struc-
ture can be approached by generalizing standard
category-learning approaches. Shafto et al. [2006] in-
troduced the CDPM (which they called CrossCat), a
generalization of standard DPMs [Neal, 1998]. The
CDPM was formalized by assuming that dimensions
are assigned to mixtures via the Chinese Restaurant
Process (CRP) [Aldous, 1985].

Let X be an I×J data matrix, where the ith row Xi,·

represents data point i and the jth column X·,j repre-
sents dimension j. Let u be a vector of latent variables
representing the partitioning of dimensions into views,
where uj = v indicates that dimension j is assigned to
view v. Let Z be a matrix of latent variables repre-
senting the partitioning of data points w.r.t. all views,
where Zi,v = c indicates that, in view v, data point i
is assigned to component c. The generative model for

a CDPM is then,

u ∼ CRP(α), (1)

Z·,v ∼ CRP(α), (2)

Θc,v ∼ H(δ), (3)

Xi,u=v ∼ F (Xi,u=v|ΘZi,v ,v), (4)

where α is the concentration hyperparameter of the
CRPs (using a single parameter for simplicity), H

is the prior distribution over component parameters
Θc,v, F is the component distribution (e.g. F is Bi-
nomial distribution and H is Beta distribution), and
u = v returns a vector of indices: (j|uj = v for j =
1, . . . , J). Alternatively, by adopting conjugate mod-
els, one may substitute Equation 3 and 4 with

XZ·,v=c,u=v ∼ G(XZ·,v=c,u=v|δ). (5)

As with the DPMs, analytic inference is intractable,
but simple Gibbs sampling algorithms are no longer
possible. Because mixing over possible views requires
potentially creating new DPMs on data points, special-
purpose MCMC algorithms are required (see [Mans-
inghka et al., 2009]). Developing computationally ef-
ficient samplers that mix well is time-consuming and
challenging, and it is desirable to have alternatives to
sampling-based methods.

4 Bayesian Hierarchical Cross

Clustering

The BHCC algorithm takes the data matrix X and
produces tree T , a hierarchical clustering of the di-
mensions. Each subtree in Tree T is represented by a
4-tuple Tc = (c, Ta, Tb, rc) where c is the identification
number for the root node of Tc, Ta and Tb are the left
and right subtrees of c, and rc is the posterior proba-
bility of merging Ta and Tb to form Tc. Each node in
T is associated with a set of dimensions and forms a
view w.r.t. which the data are generated from a DPM.

Definition 4.1. Define L(T ) as a function returning
identification numbers for all the leaf nodes in tree T ,
i.e., if T = (c, Ta, Tb, rc), then

L(T ) =

{

{c} if Ta = Tb = ∅
L(Ta) ∪ L(Tb) otherwise.

BHCC is described in Algorithm 1. The algorithm is
initialized with each dimension forming a view by it-
self: it starts with J trees: Tj = (j, ∅, ∅, 1) for j =
1, . . . , J . The algorithm proceeds by repeatedly merg-
ing the pair of subtrees that, when joined, have the
highest probability, and continues until all dimensions
are joined in the same view. To estimate the posterior
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probability of merging trees Ta and Tb, BHCC consid-
ers two hypotheses Hc

1 and Hc
2. The null hypothesis

Hc
1 states that the set of dimensions L(Ta) ∪ L(Tb)

form one view, i.e., data points in X·,L(Ta)∪L(Tb) were
generated by the same DPM,

p(X·,L(Ta)∪L(Tb)|H
c
1) = p(X·,L(Ta)∪L(Tb)|DPM).

We follow [Heller and Ghahramani, 2005a] in approx-
imating the marginal likelihood of the data under a
DPM using BHC.

The alternative hypothesis states that the dimensions
L(Ta) ∪ L(Tb) form two or more views, i.e., data
points in X·,L(Ta)∪L(Tb) were generated by two or more
DPMs. The number of possible ways of dividing n di-
mensions into two or more dimension clusters is Bn−1
where Bn is the Bell number: Bn =

∑n−1
k=0

(

n−1
k

)

Bk

and B0 = 1. Thus summing over these possibilities is
intractable. BHCC restricts itself to dimension parti-
tionings consistent with the subtrees Ta and Tb (see
Definition 5.1). The marginal likelihood of this re-
stricted alternative hypothesis, Hc

2, given the data, is
a product over the subtrees:

p(X·,L(Ta)∪L(Tb)|H
c
2) = p(X·,L(Ta)|Ta)p(X·,L(Tb)|Tb),

where each term on the right-hand side of the equation
is a probability of a data under a BHCC tree defined
recursively as follows.

Let Tc = (c, Ta, Tb, rc) be the merged tree. The
marginal probability of the data in tree Tc is a weighted
sum of the probability of the data under both hypoth-
esis:

p(X·,L(Tc)|Tc) = πcp(X·,L(Tc)|H
c
1)+

(1− πc)p(X·,L(Ta)|Ta)p(X·,L(Tb)|Tb),
(6)

where the weight πc is the prior probability of this

merge, i.e., πc
def.
= p(Hc

1). Heller and Ghahramani
[2005a] proposed a bottom-up method for computing
the prior under the CRP:

πc = 1 dc = α if Tc is a leaf

πc =
αΓ(Nc)

dc
dc = αΓ(Nc) + dadb otherwise,

(7)

where α is the concentration hyperparameter, Nc
def.
=

|L(Tc)|, and Γ(·) is the Gamma function.

The posterior probability of the merged hypothesis
given the data is computed using Bayes rule,

rc
def.
= p(Hc

1|X·,L(Tc)) =
πcp(X·,L(Tc)|H

c
1)

p(X·,L(Tc)|Tc)
. (8)

The quantity rc is used to decide greedily which two
trees to merge at the stage of inferring the BHCC tree;
it also allows one to define posterior predictive distri-
butions as discussed in Section 6.

Algorithm 1: Bayesian Hierarchical Cross-
Clustering (BHCC) algorithm.

input : An I × J data matrix X

output : The final merged tree T

initialize: Each dimension j forms a view by
itself, i.e. Tj ← (j, ∅, ∅, 1) for
j = 1, . . . , J , where the 4-tuple has the
format: (root node, left subtree, right
subtree, posterior of merge).
S ← {Tj|j = 1, . . . , J}. The current
largest root node id c← J

1 while |S| > 1 do

2 c← c+ 1
3 Find the pair of Ta, Tb with the highest

probability of the merged hypothesis:

rc ←
πcp(X·,L(Ta)∪L(Tb)|DPM)

πcp(X·,L(Ta)∪L(Tb)|DPM) + (1 − πc)papb

where pa ← p(X·,L(Ta)|Ta), and
pb ← p(X·,L(Tb)|Tb)

4 Tc ← (c, Ta, Tb, rc), i.e. join trees Ta and Tb to
form Tc with root node c, and the posterior of
merge rc

5 S ← S ∪ {Tc} − {Ta, Tb}

6 end

7 T ← S

5 Approximate Inference in a Cross

Dirichlet Process Mixture Model

In this section, we show that the BHCC algorithm is
an approximate inference algorithm for CDPM.

Definition 5.1. Define Ptns(T ) as a function return-
ing the set of tree-consistent partitionings of the set
L(T ), i.e., if T = (c, Ta, Tb, rc), then

Ptns(T ) =

{

(c) if Ta = Tb = ∅
(

L(T )
)

∪ Ptns(Ta)× Ptns(Tb) else.

For example, assume a binary tree T with 3 leaf
nodes: T = (6, T4, T3, r6), T4 = (4, T1, T2, r4), T1 =
(1, ∅, ∅, 1), T2 = (2, ∅, ∅, 1), T3 = (3, ∅, ∅, 1), then
Ptns(T ) = {(1, 2, 3), (1, 2)(3), (1)(2)(3)}.

Lemma 5.2. Let u be a vector of indicator variables

representing a partitioning of N elements, p(u) be the

probability of u in a Dirichlet-Multinomial model, i.e.,

p(u) =
∫

p(u|θ)p(θ|α) dθ where p(u|θ) is the Multi-

nomial distribution and p(θ|α) is the Dirichlet distri-

bution, then

p(u) =
Γ(α)

Γ(N + α)
αmax(u)

max(u)
∏

v=1

Γ(|u = v|),
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where max(u) is the number of clusters in partitioning

u.

Lemma 5.3. The marginal likelihood of a CDPM is:

p(X·,L(Tc)|CDPM) =
∑

u∈U

p(u)

max(u)
∏

v=1

p(X·,u=v|DPM),

where U is the set of all possible partitionings of the

dimensions L(Tc).

Lemma 5.2 follows from a standard Dirichlet inte-
gral. Lemma 5.3 follows from the definition of CDPM.
Here the explicit dependence on N , α and δ has been
dropped for simplicity.

Definition 5.4. Following from Equation 6, we define
p(u|Tc) as

p(u|Tc) =
1

dc
αmax(u)

max(u)
∏

v=1

Γ(|u = v|).

Theorem 5.5. The quantity in Equation 6 computed

by the BHCC algorithm is:

p(X·,L(Tc)|Tc)

=
∑

u∈Ptns(Tc)

p(u|Tc)

max(u)
∏

v=1

p(X·,u=v|BHC)

Theorem 5.5 can be proven by induction, starting from
the base case where Tc is a leaf node; proceeding to an
arbitrary non-leaf node Tc, with inductive hypothesis
that the Theorem holds for both subtrees Ta and Tb.
The essential techniques for the proof are the same
as in Heller and Ghahramani [2005a] and we omit the
details here.

Corollary 5.6. For any BHCC tree Tc =
(c, Ta, Tb, rc), the following is a lower bound on the

marginal likelihood of a CDPM:

dcΓ(α)

Γ(Nc + α)
p(X·,L(Tc)|Tc) ≤ p(X·,L(Tc)|CDPM)

recalling that Nc = |L(Tc)|.

Proof. Notice Ptns(Tc) ⊆ U , and p(X |DPM) ≥
p(X |BHC), based on Lemma 5.2-5.3, Definition 5.4,

and Theorem 5.5 we have

p(X·,L(Tc)|CDPM)

≥
∑

u∈Ptns(Tc)

p(u)

max(u)
∏

v=1

p(X·,u=v|DPM)

≥
∑

u∈Ptns(Tc)

p(u)

max(u)
∏

v=1

p(X·,u=v|BHC)

=
dcΓ(α)

Γ(Nc + α)

∑

u∈Ptns(Tc)

p(u|Tc)

max(u)
∏

v=1

p(X·,u=v|BHC)

=
dcΓ(α)

Γ(Nc + α)
p(X·,L(Tc)|Tc)

6 PREDICTION

In this section we define approximate inference for the
posterior predictive distribution of a new data point
p(x|X,T ), a new dimension p(y|X,T ), and a missing
value p(Xi,j |X,T ), for any BHCC tree T . Throughout
this section, x, a length-J row vector, represents a new
data point; and y, a length-I column vector, represents
a new dimension.

To estimate the predictive distribution of new obser-
vation (x,y or Xi,j) given X , the model sums the
predictions for each of the possible CDPM hypothe-
ses, weighted by the posterior probability of these
hypothesis given the data. Our approach is to ap-
proximate these predictions by considering only tree-
consistent hypotheses. We exploit the previously-built
BHCC tree, and approximate the sum using only tree-
consistent hypotheses. We present predictive distribu-
tions in Section 6.1 with recursive definitions, and we
offer inductive proofs in Appendix A.

6.1 Predictive Distributions

For any tree Tc = (c, Ta, Tb, rc), all three types of pre-
dictive distribution are approximated recursively by
summing over the probability of the new observation
(x, y, or Xi,j) conditioned on the two hypothesis (Hc

1

and Hc
2) weighted by the posterior probability of the

hypothesis given the data:

p(new observation|X·,L(Tc), Tc)

def.
= p(Hc

1|X·,L(Tc))p(new observation|Hc
1)+

(1− p(Hc
1|X·,L(Tc)))p(new observation|Hc

2).

(9)

The base case of the recursion, for which Tc is
a leaf node, is also defined by Equation 9 with
p(Hc

1|X·,L(Tc)) = rc = 1 by definition.
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To predict a novel data point, note that while recursing
down the tree, the new data point x is divided into two
independent pieces according to the tree partitioning:
xL(Ta) and xL(Tb). Thus for x, Equation 9 becomes

p(x|X·,L(Tc), Tc) = rcp(x|X·,L(Tc),DPM) + (1− rc)

p(xL(Ta)|X·,L(Ta), Ta)p(xL(Tb)|X·,L(Tb), Tb).

(10)

When predicting a novel dimension, the new dimension
y can be generated by each of the subtrees Ta and Tb.
Thus for y, Equation 9 becomes

p(y|X·,L(Tc), Tc) = rcp(y|X·,L(Tc),DPM)+

(1 − rc)
(

p(y|X·,L(Ta), Ta) + p(y|X·,L(Tb), Tb)
)

.
(11)

We define p(y|X·,L(Tk),DPM) as the probability of the
dimension y given that X·,L(Tk) is generated from a
DPM w.r.t. the view containing the set of dimensions
L(Tk):

p(y|X·,L(Tk),DPM)

def.
=

∑

z∈V

p(z|X·,L(Tk),DPM)p(y|z)

=
∑

z∈V

p(z|X·,L(Tk),DPM)

max(z)
∏

c=1

p(y
z=c),

(12)

where V denotes the set of all partitionings of data
points in the data, each partitioning z ∈ V is repre-
sented in the form of a vector of indicator variables.
|V| follows the Bell number and the quantity in Equa-
tion 12 is intractable. Again, it is approximated by
recursing through the BHC tree.

For a missing value, Xi,j , those views (a.k.a. dimen-
sion clusters) in the tree not including dimension j

will not contribute to the prediction. Thus Equation 9
becomes

p(Xi,j |X·,L(Tc), Tc)
def.
=

rcp(Xi,j |X·,L(Tc),DPM)|j ∩ L(Tc)|+ (1− rc)
(

p(Xi,j |X.,L(Ta), Ta) + p(Xi,j |X.,L(Tb), Tb)
)

.

(13)

7 Randomized BHCC

Computational complexity is the primary limitation of
the BHCC algorithm, which takes O(I2J2) computa-
tion time to build the tree given a I × J data. This
section presents one method that can dramatically de-
crease the complexity, based on a randomized filtering
approach [see Heller and Ghahramani, 2005b].

The Randomized BHCC (RBHCC) algorithm is de-
scribed in Algorithm 2. It takes in a data set X and

Algorithm 2: Randomized Bayesian Hierarchical
Cross-Clustering (RBHCC) algorithm

input : An I × J data matrix X . A threshold
number B determining when to stop
RBHCC

output : The final merged tree T

1 if J < B then return T ← BHCC(X)
2 V ← {1, 2, . . . , J}, Va = Vb = ∅
3 Pick V0 ⊂ V randomly where |V0| � J

4 T ← BHCC(X·,V0
), which, as defined in

Algorithm 1, returns a 4-tuple (c, Ta, Tb, rc) with c

the root node id, Ta and Tb the left and right
subtrees of the root, and rc the posterior of
merging Ta and Tb

5 foreach j ∈ V − V0 do

6 y ← X·,j

7 pa ← p(y|X·,L(Ta), Ta), pb ← p(y|X·,L(Tb), Tb)
8 if πapa > πbpb then

9 Va ← Va ∪ {j}
10 else

11 Vb ← Vb ∪ {j}
12 end

13 end

14 Ta ← RBHCC(X.,Va∪L(Ta), B)
15 Tb ← RBHCC(X.,Vb∪L(Tb), B)
16 pa ← p(X·,L(Ta)|Ta), pb ← p(X·,L(Tb)|Tb),

rc ←
πcp(X·,{L(Ta),L(Tb)}|DPM)

πcp(X·,{L(Ta),L(Tb)}|DPM) + (1− πc)papb

17 T ← (c, Ta, Tb, rc), where c is a node id unique to
T

randomly selects a subset of dimensions V0 from the
whole set of dimensions V . The original BHCC algo-
rithm is run on X·,V0

, obtaining a tree T . Based on
the priors of the two top subtrees of T , along with
the predictive probabilities that a dimensions belongs
to the left subtree and the right subtree (defined in
Equation 11), the remaining dimensions, V − V0 are
then filtered individually down the tree.

For RBHCC, the cost is composed of three parts. The
upper levels of the tree are constructed using random-
ized BHCC, which includes recursively running nor-
mal BHCC to construct the initial tree and then filter-
ing the remaining dimensions based on the tree. The
lower levels (the threshold number B in Algorithm 2
is reached) are built using normal BHCC. The total
number of dimension comparisons can be expressed
recursively as:

Comp(J) = |V0|
2 + J +Comp(aJ) +Comp((1− a)J),
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Original Data Single View

View 1 View 2 View 3 View 4

Figure 1: Comparison of the clustering(s) between
BHC and BHCC. The data matrix and the results from
BHC (Single View) and BHCC (View 1-4) are shown
in heatmaps, where each row denotes a data point and
each column denotes a dimension. Note that the num-
ber of views and the partitioning of dimensions are
unknown a priori to BHCC and are inferred from the
data.

recalling that V0 is the set of dimensions randomly cho-
sen for running BHCC, 0 ≤ a ≤ 1 is the proportion of
dimensions on one side of the tree. Note that |V0| can
be considerably smaller than J when J is large; Mean-
while, the depth of a balanced binary tree is log(J).
Thus the number of dimension comparisons comp(J)
has the computational complexity O(J log(J)). If the
DPM w.r.t. the views is approximated by the random-
ized BHC algorithm, the overall complexity of RBHCC
is O(IJ log I log J).

Generally, capturing higher level structures is suffi-
ciently informative. Thus we could restrict the algo-
rithm to running only the top L levels, either a priori
or interactively. With these much smaller dimensions
and data points cut-off levels (L for dimensions and K

for data points), the truncated RBHCC algorithm is
linear, O(IJLK).

8 RESULTS

8.1 An Example

We illustrate the performance of the algorithms using
a synthetic dataset. We generated a Binomial dataset
with 100 data points and 200 dimensions. The data
set has four views of data point clusterings. i.e. a
CDPM with four DPMs each w.r.t. a subset of the
original 200 dimensions. The number of dimensions
within Views 1-4 are 30, 50, 50 and 70 respectively.
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Figure 2: Comparison of predictive performance
among DPM approximations (BHC and Gibbs sam-
pling) and CDPM approximations (BHCC, MCMC
and RBHCC) on the same synthetic datasets. Set II
has 2 views; Set III has 3 views and Set IV has 4 views.
Each DPM w.r.t. its view contains four well separated
Binomial mixture components.

The number of Binomial mixture components 1 under
Views 1-4 are 4, 5, 6 and 8 respectively.

We applied BHC and BHCC on the data. Figure 1
shows the original data, the result from BHC (Sin-
gle View) and the results from BHCC (Views 1 - 4).
Heatmaps are used to display the data matrix and the
results where each row denotes a data point and each
column denotes a dimension. For BHC and BHCC,
the data points are rearranged according to the in-
ferred hierarchical tree over data points to reflect the
clustering.

Note that in BHCC, the partitioning of dimensional
space is represented by an inferred hierarchical tree
over dimensions. It yields four dimension subsets when
choosing 0.5 as the threshold of posterior probability
of merging. In each view, clear category structure is
evident by the horizontal striations.

8.2 Comparison of Predictive Performance

We compared the predictive performance of BHCC
and RBHCC to those from Markov Chain Monte Carlo
(MCMC) for CDPM, and two inference methods for
DPM, i.e. the BHC approximation and collapsed
Gibbs sampling [Neal, 1998]. We first compared these
algorithms on 3 synthetic datasets. We then compared
them on 4 real-world datasets. In each experiment, a
one time 10-fold cross-validation is performed on pre-
dicting missing values, i.e., the set of entries in the
data matrix is randomly partitioned into 10 subsets,
of which each subset is hold out once as the validation
data and the remaining 9 subsets are used as training
data.

The number of filtering levels for RBHCC is set to

1Let xk be a data point in the kth component, and
θk be the mean of the kth component. Then xk ∼

Binomial(N ,θk) and θk ∼ Beta(α,β). We set N =
50,α = β = 0.5.
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Figure 3: Comparison of predictive performance
among DPM approximations (BHC and Gibbs sam-
pling) and CDPM approximations (BHCC, MCMC
and RBHCC) on the same real datasets. The 4 real
datasets are Arcene, Isolet, Musk and Sonar. The
number of dimensions used for the test is D (e.g. D
= 200) and the number of data points chosen is fixed
to 100. For test Arcene (D=2000), the results from
BHCC and MCMC are not available because of long
running time.

L = 6. In each experiment, the collapsed Gibbs sam-
pling for DPM was performed for 100 iterations 2, the
first half was used for burn-in and every fifth sample
from the second half was used to estimate posterior
quantities. Each iteration consisted of sampling all the
latent indicator variables associating mixture compo-
nents with data points. To facilitate mixing, we in-
terleaved split-merge proposals [Jain and Neal, 2004]
between Gibbs sweeps. In each experiment, MCMC
for CDPM was performed for 100 iterations, first half
of which were used for burn-in and every fifth of the
second half for estimating posterior quantities. To im-
prove the mixing, Metropolis coupled MCMC [Geyer,
1991] was performed in which two chains were run, one
of which was “heated” by raising the posterior proba-
bility to a power 0.8. Due to space limitations, we do
not review the MCMC for CDPM and the collapsed
Gibbs sampling for DPM here.

We generated 3 sets of 200-dimensional Binomial
datasets, each with 100 data points. Set II has 2 views;
Set III has 3 views and Set IV has 4 views. Each view
contains a DPM with four well separated Binomial
mixture components. Figure 2 shows the prediction
results. We found that the predictive accuracy of infer-
ence methods for DPM decreased dramatically as the
number of views in the data increased, while methods
for CDPM maintained a consistently high accuracy re-
gardless of the number of views. Meanwhile, RBHCC,
BHCC and MCMC yield equally high accuracy.

2Tests showed that increasing the number of iterations
did not lead to better predictive accuracy.
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Figure 4: Comparison of the prediction accuracy, the
estimated marginal likelihood lower bound (not appli-
cable to MCMC), and the runtime among RBHCC,
BHCC and MCMC. X-axis represents the number of
dimensions used. The number of data points is fixed
to 100.

The real datasets used were the Arcene data (900 data
points, 10000 dimensions) from NIPS 2003 feature se-
lection challenge, Isolet (7797 data points, 617 dimen-
sions), Musk Version 1 (476 data points, 168 dimen-
sions), and Sonar mines vs. rocks (208 data points, 60
dimensions) data. All data are from the UCI repos-
itory [Asuncion and Newman, 2007]. In each experi-
ment, we chose a subset of 100 data points and varied
the number of dimensions between 60 and 2000. Fig-
ure 3 shows the results. The performance of each algo-
rithm varied across datasets. Comparing the predic-
tive accuracy between inference algorithms for CDPM
and for DPM, we found the former gave a substan-
tial improvement on the Arcene and the Isolet data
and a slight improvement on the Musk and the Sonar
data. Meanwhile, RBHCC, BHCC and MCMC yield
generally equal accuracy.

8.3 Prediction, Estimated Marginal

Likelihood, and Runtime Comparisons

among CDPM Inference Algorithms

To investigate the relationship between speed and ac-
curacy among the CDPM algorithms, we contrasted
prediction accuracy, the estimated log marginal like-
lihood (per point, not applicable to MCMC) and
the runtime among RBHCC, BHCC and MCMC on
the real datasets of varying sizes. To do so, we se-
lected a subset of the total dimensions, varying the
number of dimensions between 40 and 200 (see Fig-
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Figure 5: Comparison of prediction accuracy among
RBHCC with different filtering levels. The number of
dimensions used for the test is D (e.g. D = 2000) and
the number of data points are fixed to 100.

ure 4). Although the estimated marginal likelihood
lower bounds differ for RBHCC and BHCC, the al-
gorithms yield quite similar prediction accuracy. The
runtime of MCMC depends on the structure (i.e. num-
ber of views and DPMs) underlying the data, which
leads to quite variable runtime. Furthermore, we note
that, consistent with our complexity analyses, RBHCC
offers a significant speedup compared to BHCC: RB-
HCC scales linearly w.r.t. the number of dimensions
in the data, while BHCC is quadratic.

8.4 Varying the Filtering Levels for RBHCC

To investigate the tradeoff between runtime and pre-
diction accuracy in the RBHCC, we varied the number
of filtering levels between 2 and 8 for RBHCC and ran
it on dataset Arcene, Isolet and Musk datasets. Fig-
ure 5 shows the prediction accuracy. For all tests, the
accuracy increases as the level increases. Further, the
gain in accuracy gets smaller as L reaches to a certain
level, indicating the performance reaches a potential
upper bound and it is not necessary to continue in-
creasing L.

9 CONCLUSIONS

We described Bayesian Hierarchical Cross-Clustering
(BHCC), a novel approach for approximate inference
of multi-view data. The algorithm provides a deter-
ministic, agglomerative, approximate approach to in-
ference in a Cross Dirichlet Process Mixture (CDPM)
model. We have also introduced a fast, randomized
algorithm (RBHCC) that scales linearly in the num-
ber of levels of the hierarchy. We have contrasted
predictive performance on synthetic and real-world
data, with clustering models that adopt a single view
of the data, the DPM with Gibbs sampling-based
inference and Bayesian Hierarchical Clustering, and
cross-clustering models that adopt multiple views of
the data, the CDPM with MCMC-based inference,
BHCC, and RBHCC. Our results show that algorithms
based on inferring multiple views have greater predic-

tive accuracy, that the deterministic approaches per-
form comparably to MCMC-based inference, and the
RBHCC provides a remarkable speed-up relative to
BHCC, with little cost in predictive accuracy. We
consider these results promising, and future work will
explore applications of the model to other real-world
data sets, and extensions to more richly structured
models.
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A SUPPLEMENTAL MATERIALS

We begin with some preliminary definitions, then pro-
ceed to prove the consistency of the predictive distri-
butions.

Definition A.1. Define Nodes(T ) as a function re-
turning the identification numbers of all the nodes in
tree T , i.e., if T = (c, Ta, Tb, rc), then

Nodes(T ) =

{

∅ if T = ∅,
{c} ∪Nodes(Ta) ∪ Nodes(Tb) else.

Definition A.2. Define Parent(T, k) as a function re-
turning identification number of the immediate parent
of node k in a BHCC tree T , i.e.,

Parent(T, k) =
{

∅ if k is root of T,
{c|Tc = (c, Tk, Tb, rc) ∨ Tc = (c, Ta, Tk, rc)} else.

Definition A.3. Define Path(T, k) as a function re-
turning identification numbers of all the nodes in the
path from the root to node k in a BHCC tree T , i.e.,

Path(T, k) =

{

∅ if {k} ∩ Nodes(T ) = ∅,
{k} ∪ Path(T,Parent(T, k)) else.

Definition A.4. Define ω(T, k) as the posterior prob-
ability that L(Tk) forms a view and merging other sub-
trees to Tk does not yield a view:

ω(T, k) = rk
∏

c∈Path(T,k)−{k}

(1 − rc).

Lemma A.5. The quantity defined in Equation 10 has

a lower bound:

∑

u∈Ptns(Tc)

max(u)
∏

v=1

ω(Tc, k)p(xu=v|X.,u=v,DPM), (14)

where the partitioning u is represented in the form of

a vector of indicator variables, max(u) is the number

of clusters in partitioning u, and k is the node in Tc

such that the two vectors u = v and L(Tk) have the

same set of dimensions.

Proof. We show a proof by induction. If c is the
leaf node, Ptns(Tc) = (c), max(u) = 1, k = c

and ω(Tc, c) = rc = 1, thus Equation 14 becomes
p(x|X.,L(Tc),DPM) which is equal to the quantity in
Equation 10. Thus the lemma is true in the base case.

Our inductive hypothesis is that the lemma holds for
the two subtrees Ta and Tb. That is,

p(xL(Ta)|XL(Ta), Ta) ≥

∑

u
′∈Ptns(Ta)

max(u′)
∏

v′=1

ω(Ta, k
′)p(xu

′=v′ |X.,u′=v′ ,DPM)

and same for p(xL(Tb)|XL(Tb), Tb); Also note that

ω(Ta, k
′) ≥ (1 − rc)ω(Ta, k

′) = ω(Tc, k
′),

and same for ω(Tb, k
′′). Therefore

(1− rc)p(xL(Ta)|XL(Ta), Ta)p(xL(Tb)|XL(Tb), Tb) ≥

∑

u
′∈Ptns(Ta)

max(u′)
∏

v′=1

ω(Tc, k
′)p(xu

′=v′ |X.,u′=v′ ,DPM)×

∑

u
′′∈Ptns(Tb)

max(u′′)
∏

v′′=1

ω(Tc, k
′′)p(xu

′′=v′′ |X.,u′′=v′′ ,DPM)

=
∑

u∈Ptns(Ta)×Ptns(Tb)

max(u)
∏

v=1

ω(Tc, k)p(xu=v|X.,u=v,DPM)

(15)

Meanwhile, for the trivial partitioning (L(Tc)) (recall-
ing that (L(Tc)) represents the partitioning where all
dimensions in L(Tc) are assigned to the same cluster),
we have max(u) = 1, k = c and ω(Tc, c) = rc. Thus
for u = (L(Tc))

max(u)
∏

v=1

ω(Tc, k)p(xu=v|X.,u=v,DPM)

= rcp(xL(Tc)|X.,L(Tc),DPM)

(16)

By definition, Ptns(Tc) = (L(Tc)∪Ptns(Ta)×Ptns(Tb).
Therefore combining the results from Equation 15 and
16, we see the lemma is true.

Lemma A.6. The quantity defined in Equation 11 is

equal to the quantity:

∑

k∈Nodes(Tc)

ω(Tc, k)p(y|X·,L(Tk),DPM) (17)

which sums over the prediction w.r.t. all the nodes in

Tc weighted by the posterior of the nodes.

Proof. We show a proof by induction. If c is a leaf
node, then Ta = Tb = ∅ and rc = 1. By definition,
p(y|X·,L(Tc), Tc) = p(y|X·,L(Tc),DPM); Meanwhile,
Nodes(Tc) = {c}, ω(Tc, c) = rc = 1, L(Tc) = {c},
thus Equation 17 becomes p(y|X·,L(Tc),DPM). Thus
the lemma is true in the base case.

Our inductive hypothesis is that Equation 17 holds for
the two subtrees Ta and Tb, i.e.,

p(y|X·,L(Ta), Ta) =
∑

k∈Nodes(Ta)

ω(Ta, k)p(y|X·,L(Tk),DPM)

and same for Tb. Meanwhile, by definition, (1 −
rc)ω(Ta, k) = ω(Tc, k) and same for Tb; and rc =



Dazhuo Li, Patrick Shafto

ω(Tc, c). Therefore,

p(y|X·,L(Tc), Tc) = ω(Tc, c)p(y|X·,L(Tc),DPM)+
∑

k∈Nodes(Ta)

ω(Tc, k)p(y|X·,L(Tk),DPM)+

∑

k∈Nodes(Tb)

ω(Tc, k)p(y|X·,L(Tk),DPM)

Further notice Nodes(Tc) = {c} ∪ Nodes(Ta) ∪
Nodes(Tb), thus the lemma is true.

Lemma A.7. The quantity defined in Equation 13 is

equal to the quantity:

∑

k∈Path(Tc,j)

ω(Tc, k)p(Xi,j |X·,L(Tk),DPM) (18)

which sums over the prediction w.r.t. the nodes on the

path from root to dimension j, weighted by the poste-

rior of the nodes.

Proof. We show a proof by induction. If c is a
leaf node, Path(Tc, j) = {c} ∩ {j}, ω(Tc, c) =
rc = 1, L(Tc) = {c}, thus Equation 18 becomes
p(Xi,j |X·,L(Tc),DPM) × |{c} ∩ {j}| which is also the
case in Equation 13 (Ta = Tb = ∅ and rc = 1). Thus
the lemma is true in the base case.

Our inductive hypothesis is that Equation 18 holds for
the two subtrees Ta and Tb, i.e.,

p(Xi,j |X·,L(Ta), Ta) =
∑

k∈Path(Ta,j)

ω(Ta, k)p(Xi,j |X·,L(Tk),DPM)

and same for Tb. Meanwhile, by definition, (1 −
rc)ω(Ta, k) = ω(Tc, k) and same for Tb; and rc =
ω(Tc, c). Therefore,

p(Xi,j |X·,L(Tc), Tc) =

ω(Tc, c)p(Xi,j |X·,L(Tc),DPM)× |{j} ∩ L(Tc)|+
∑

k∈Path(Ta,j)

ω(Tc, k)p(Xi,j |X·,L(Tk),DPM)+

∑

k∈Path(Tb,j)

ω(Tc, k)p(Xi,j |X·,L(Tk),DPM)

Assume j is a leaf node of subtree Ta, then
Path(Tb, j) = ∅, Path(Tc, j) = {c} ∪ Path(Ta, j) and
|{j} ∩ L(Tc)| = 1, thus the lemma is true.


