A Unifying Computational Framework for Teaching and Active Learning

Scott Cheng-Hsin Yang, a,† Wai Keen Vong, a,† Yue Yu, b Patrick Shafto a

a Department of Mathematics & Computer Science, Rutgers University—Newark
b Centre for Research in Child Development, National Institute of Education, Singapore

Received 4 August 2017; received in revised form 16 November 2018; accepted 28 November 2018

Abstract

Traditionally, learning has been modeled as passively obtaining information or actively exploring the environment. Recent research has introduced models of learning from teachers that involve reasoning about why they have selected particular evidence. We introduce a computational framework that takes a critical step toward unifying active learning and teaching by recognizing that meta-reasoning underlying reasoning about others can be applied to reasoning about oneself. The resulting Self-Teaching model captures much of the behavior of information-gain-based active learning with elements of hypothesis-testing-based active learning and can thus be considered as a formalization of active learning within the broader teaching framework. We present simulation experiments that characterize the behavior of the model within three simple and well-investigated learning problems. We conclude by discussing such theory-of-mind-based learning in the context of core cognition and cognitive development.

Keywords: Bayesian model; Active learning; Bayesian teaching

1. Introduction

We learn by interacting with the world, by choosing what to look at and what to do. Through these actions, we accumulate knowledge about the world. We also learn from
other people. Sometimes these people are knowledgeable about the world and demonstrate actions with the intent to foster learning, as is the case with informal notions of teaching (Shafto, Goodman, & Griffiths, 2014). Other times, people may not be fully knowledgeable but may nevertheless select demonstrations that we observe (Shafto, Eaves, Navarro, & Perfors, 2012). Indeed, in some teaching contexts, teachers may be no more knowledgeable than ourselves, in which case their actions may be no better than uninformed choices of our own (Markant & Gureckis, 2014). To understand learning in realistic contexts, we must understand actions that are chosen for learning as in active learning, actions that are chosen for others and their implications for learners as in teaching, as well as integrating both active learning and teaching into a singular experience.

The literatures on active learning and teaching are not well-integrated despite having been the subject of extensive independent and joint research. For instance, there is a robust debate in the educational psychology literature regarding the relative merits of direct instruction and exploratory learning, which are the analogs of formal models of teaching and active learning (Bruner, 1961; Kirschner, Sweller, & Clark, 2006; Tobias & Duffy, 2009). Research has focused on identifying which of these is more effective for promoting learning, with mixed evidence in favor of exploration (Steffe & Gale, 1995), direct instruction (Kirschner et al., 2006), and rough equivalence (Klahr & Nigam, 2004). There has also been extensive research into formalizing active learning and teaching as different kinds of computational models. Early computational models of active learning date back to early work by Bruner, Goodnow, and Austin (1956), and sustained recent attention in this area has resulted in a variety of computational models which converge around the idea that people choose examples that reduce some globally defined notion of uncertainty over possible hypotheses (Coenen, Nelson, & Gureckis, 2017; Crupi, Nelson, Meder, Cevolani, & Tentori, 2018; Nelson, 2005). Similarly, recent modeling has formalized teaching and learning from teaching as a form of recursive reasoning between a teacher and a learner (Frank, 2014; Shafto & Goodman, 2008; Shafto, Goodman, & Frank, 2012; Shafto et al., 2014). These models characterize this form of social learning as a joint inference about the true hypothesis and the process by which the teacher selects data (Shafto & Goodman, 2008; Shafto et al., 2014). Although the problems of active learning and teaching are of common interest to many researchers, to our knowledge, no work has attempted to synthesize both kinds of learning as a common formal framework in which we may understand both from a singular learning mechanism.

In this paper, we explore a unified approach to modeling active learning and teaching. The goal of both active learning and teaching is for the learner to infer the true hypothesis. The defining feature of active learning is that the learner can intervene the world; however, he or she likes to discover that hypothesis. However, because the learner does not know the true hypothesis, he or she learns by choosing interventions based on an intermediate objective. The literature on computational models of active learning reveals two relatively distinct sets of phenomena summarized by two kinds of objectives. One objective is that people select interventions with the goal of information gain or minimizing uncertainty (Crupi et al., 2018; Nelson, 2005; Yang, Lengyel, & Wolpert, 2016). The other objective is that people select interventions to test hypotheses with a bias toward
confirmation (Bramley, Dayan, Griffiths, & Lagnado, 2017; Coenen et al., 2017; Klayman & Ha, 1987; Navarro & Perfors, 2011; Wason, 1960).

In contrast to computational models of active learning, the defining feature of formal models of teaching is that learners receive demonstrations of an intervention from a knowledgeable teacher rather than choosing it themselves. Moreover, since demonstrations are chosen by a teacher who knows the true hypothesis, the teacher will therefore choose demonstrations that he or she thinks will best help the learner infer the true hypothesis after observing the demonstrations. We explore the idea that models of teaching can be transformed to perform active learning by assuming that the correct hypothesis is unknown to the teacher. This has the virtue of preserving the core structural element of theory of mind but applying it reflexively when only a single learner is present. In this paper, we mathematically derive this form of self-teaching and show through simulations that the Self-Teaching model exhibits a range of active learning behaviors, favoring interventions that effectively reduce uncertainty in some cases and those that test for hypothesis in other cases. Thus, self-teaching not only unifies the phenomena of active learning and teaching, but may also offer insight into how the different phenomena of active learning can be explained.

The differences between Self-Teaching and standard models of active learning, such as Expected Information Gain (EIG), derive from different methods of computing which example to choose next (Fig. 1). In this example, we consider one case (Fig. 1, top row) where the predictions of the Self-Teaching and EIG models exhibit the same ordering of preferences for which intervention to select, while the other case (Fig. 1, bottom row) is an instance where the two models exhibit different preferences. Both models make use of the learner’s posterior but in different ways. The Self-Teaching model takes the sums of the marginal distributions over hypotheses and observations to determine its response, while the EIG model calculates the concentration of posterior mass across different hypotheses as the information gain. A key component of the Self-Teaching model is the inverse of the marginal probabilities of the hypotheses, which we call distinctiveness. The distinctiveness of a hypothesis indicates how unlikely a learner would be to infer that hypothesis if all interventions and observations are equally likely to occur. Equivalently, from a teacher’s perspective, it indicates how difficult it would be to learn the hypothesis if the teacher were to uniformly randomly choose an intervention and observation. The Self-Teaching model has a tendency toward discovering hypotheses with high distinctiveness. From the simulations, we see that the distinctiveness of each hypothesis determines whether the two models will have the same preference or not. When the hypotheses are all of the same level of distinctiveness as seen in the bottom row of Fig. 1, then the behavior of the Self-Teaching model differs from EIG.

The rest of the paper will be devoted to formalizing and exploring active learning as a form of self-teaching. In Section 2, we introduce the mathematical models of EIG and Self-Teaching. In Section 3.1, we describe the simulation of the learning tasks. In Section 3.2, we present the simulation results which characterize the behavior of the Self-Teaching model relative to active learning models. In Section 4, we revisit the potential implications of a unified model of teaching and active learning and describe open questions.
2. Theory

To bridge the gap between these two modes of learning, the focus of this theory section is to modify the teaching model (Shafto & Goodman, 2008; Shafto et al., 2014) in two stages to demonstrate how teaching may be reduced to a form of active learning. In
the first stage, we modify the teaching model from providing both features and labels to just providing instruction on which feature to select (from the top part to the middle part of Fig. 2b). Mathematically, this involves marginalization over the possible outcomes (labels), which are no longer under the teacher’s control. In the second stage, we further modify the teaching model so that the teacher no longer knows the true hypothesis, and averages over his or her own uncertainty when teaching. Mathematically, this involves marginalization over the possible hypotheses. This kind of teaching is formally equivalent to a learner simulating a teacher to determine how to teach oneself, hence the term self-teaching (from the middle part to the bottom of Fig. 2b).

Because the learner selects interventions for herself in self-teaching, it is a form of active learning. Nevertheless, it is different from information-gain-based active learning in that the single architecture for meta-reasoning underlies learning for oneself through active learning, and learning from others through teaching. From a formal perspective, this reflects a difference in the objective being optimized for. As will be discussed in the following subsection, the Self-Teaching model shares the goal of choosing interventions to help inferring the correct hypothesis with the teaching models, but having no access to the truth. It expresses this goal as a bias to confirm whether the true hypothesis is one that is difficult to learn if intervention–observation pairs are to occur uniformly at random (see Fig. 1 and related text). This is in contrast with formalizations of active learning such as the EIG model. The history of active learning models has been focused on performance. From this perspective, maximizing long-run reward—the posterior probability on the true hypothesis—is optimal, and uncertainty reduction is a well-accepted heuristic. Here, we take a drastically different perspective by presenting a framework where the selection of data and inference from data are consistent across teaching and active learning. In other words, the Self-Teaching model is not motivated by an optimization constraint on a performance-related quantity; rather, it is made to satisfy a consistency constraint of keeping the inference from data and selection of data the same in active learning and teaching. After introducing the EIG and Self-Teaching models more formally in this section, we highlight both similarities and differences in the predictions of the two models in Section 3.2.

2.1. Notation for inference

In this section, we formalize learning as Bayesian inference and the associated notation. The learner’s goal is to infer, from among all possible hypotheses, the true hypothesis. We denote a hypothesis by \(h \), the true hypothesis by \(h^* \) and the space of all hypotheses by \(\mathcal{H} \). Each hypothesis is characterized by a particular set of features and labels. We denote a feature and a label by \(x \) and \(y \), respectively, and the space of possible features and labels by \(\mathcal{X} \) and \(\mathcal{Y} \), respectively.

Initially, the learner has a prior over hypotheses \(P_L(h) \), where the hypotheses refer to either concepts in the concept learning tasks or graphs in the causal learning task (Section 3.1). For all tasks, the prior is set to be uniform. After observing a feature, label pair \((x, y)\), the learner updates his or her beliefs in accordance with Bayes’ rule:
After the learner has observed a data point, the new learner’s prior $P_L(h)$ is set to be the current learner’s posterior $P_L(h|x, y)$, without loss of generality.

2.2. The Expected Information Gain model

In the problem of active learning, a learner must determine how to efficiently intervene and sample from the environment for effective learning. One approach is to choose which pieces of information would be most helpful at reducing the uncertainty about the true hypothesis, known as *information gain* (MacKay, 1992; Nelson, 2005). Using the EIG criterion, the basis for selecting which feature to intervene on is determined by how much

\[
P_L(h|x, y) \propto P(y|x, h)P_L(h).
\]

After the learner has observed a data point, the new learner’s prior $P_L(h)$ is set to be the current learner’s posterior $P_L(h|x, y)$, without loss of generality.

Fig. 2. Comparison of active learning using either (a) the Expected Information Gain (EIG) model or (b) the Self-Teaching model (and how it can be derived from teaching). In each subfigure, the learner is depicted on the left (in red) and teacher (if it exists) is shown on the right (in blue when performing “Teaching-by-Intervention,” and in green when performing “Teaching-by-Instruction”), and the position of the object indicates how either person interacts with it. In the EIG model (left), the learner determines which feature x to select on the object by calculating the EIG of choosing each feature. The learner performs a query on a particular feature (as shown by the downward arrow) and receives a set of observations (represented by the different colors on the circles in the box). On the right, we first illustrate the Teaching-by-Intervention model (top right), where the teacher demonstrates a feature-label pair (x, y) to the learner. By marginalizing over the possible labels y, this produces the Teaching-by-Instruction model (middle right), where the teacher instructs the learner which feature x to select (as depicted by the feature shown in purple). Finally, by marginalizing over the hypotheses g, we show how the Self-Teaching model is a form of active learning. Here, the learner simulates a self-teacher (using the Teaching-by-Instruction equations) and marginalizes over all hypotheses to determine which feature to select. In this case, the Self-Teacher ends up performing the same query as the EIG model.
information the learner would gain on average if he or she intervened on that particular feature. In order words, the learner selects the feature that maximizes the reduction in uncertainty about the true hypothesis.

In order to calculate the EIG, we first define the learner’s prior entropy by the Shannon entropy over possible hypotheses as follows:

$$H(h) = \sum_{h \in \mathcal{H}} P_L(h) \log \frac{1}{P_L(h)}.$$ \hspace{1cm} (1)

After a learner makes an intervention and observes a feature-label pair \((x, y)\), he or she updates his or her beliefs via Bayes’ rule to obtain a posterior distribution over hypotheses, \(P_L(h| x, y)\). From this, we can calculate the learner’s posterior entropy after observing a data point \((x, y)\):

$$H(h|x, y) = \sum_{h \in \mathcal{H}} P_L(h|x, y) \log \frac{1}{P_L(h|x, y)}.$$ \hspace{1cm} (2)

We can then calculate the information gain of intervening on a particular feature \(x \in \mathcal{X}\) produced a particular label \(y \in \mathcal{Y}\), as follows:

$$\text{IG}(x, y) = H(h) - H(h|x, y).$$ \hspace{1cm} (3)

However, since the set of possible labels that could be observed contains uncertainty, the EIG is calculated by weighting the posterior entropy by the probability of observing particular labels given a particular feature as follows:

$$\text{EIG}(x) = H(h) - \sum_{y \in \mathcal{Y}} P_L(y|x) H(h|x, y),$$ \hspace{1cm} (4)

where \(P_L(y|x) = \sum_{h \in \mathcal{H}} P(y|x, h) P_L(h)\) is the predictive distribution over labels. Once the learner has calculated the EIG using Eq. 4, he or she can choose to select the feature with the highest EIG. However, research has shown that people do not always prefer to maximize information gain, and they may instead elect to select features probabilistically in accordance to the EIG following a softmax choice rule (Sutton & Barto, 1998).

2.3. Teaching models

To unify the phenomena of teaching and active learning, we begin with the pedagogical model introduced by Shafto and Goodman (2008) and Shafto et al. (2014), which we call Teaching-by-Intervention here. This model outputs a teaching probability, \(P_T(x, y|h)\), which is the probability that the teacher will demonstrate a feature-label pair \((x, y)\) to teach an underlying hypothesis \(h\) to a learner. To move from Teaching-by-Intervention to our Self-Teaching model of active learning, we perform a number of marginalizations over possibilities. Each of these marginalizations produces a different kind of teaching
model: marginalizing out \(y \) gives what we call the Teaching-by-Instruction model with output \(P_T(x|h) \) that depends only on \(x \) and \(h \) (Yang & Shafto, 2017); further marginalizing out \(h \) produces the Self-Teaching model with output \(P_T(x) \), where the probability of selecting a feature is independent of any particular hypothesis. The objective of the Self-Teaching model is to favor \(x \) that confirms whether the true hypothesis is distinctive—unlikely to be identified with random observation—and is different from objectives based on information gain.

2.3.1. Teaching-by-intervention

The standard set-up in a teaching model involves both a teacher and a learner. We assume that the teacher knows the true underlying hypothesis and gives the learner \((x, y)\) pairs as an intervention demonstration to help the learner infer the true hypothesis. The learner’s and teacher’s reasoning under this kind of pedagogical setting can be formalized as follows (Shafto & Goodman, 2008; Shafto et al., 2014):

\[
P_L(h|x, y) \propto P_T(x, y|h)P_L(h), \tag{5a}
\]

\[
P_T(x, y|h) \propto P_L(h|x, y)P_T(x, y). \tag{5b}
\]

The term \(P_T(x, y) \) is set to be uniform because the teacher is indifferent to teaching any particular data points a priori. To solve this coupled system of equations, one typically begins by computing the learner’s posterior with the observation likelihood: \(P_L(h|x, y) \propto P(y|x, h)P_L(h) \). This posterior is then fed into Eq. 5b to obtain an estimate \(P_{T_0}(x, y|h) \). Then, this estimate \(P_{T_0}(x, y|h) \) is fed into Eq. 5a to obtain an updated estimate \(P_{L_1}(h|x, y) \), which again is fed into Eq. 5b to obtain an updated estimate of \(P_{T_1}(x, y|h) \). This recursion proceeds until the distributions \(P_{L_n}(h|x, y) \) and \(P_{T_n}(x, y|h) \) have converged. What this coupled process describes is that the teacher’s objective is to select \((x, y)\) so that the learner can correctly infer \(h \), and that the learner knows that the teacher is providing demonstrations to them for this purpose.

Once this process has converged, and since the teacher knows the true hypothesis \(h^* \), he or she can then provide a demonstration \((x, y)\) to the learner according to \(P_T(x, y|h^*) \), which is the distribution of demonstrations conditioned on the true hypothesis \(h^* \). Similarly, as the learner knows that the teacher is attempting to provide demonstrations \((x, y)\) based on the knowledge of \(h^* \), the learner can identify which of the hypotheses is the true hypothesis \(h^* \) by examining the specific demonstration provided by the teacher. This recursive and cooperative inference involving a knowledgeable teacher makes the learning the true hypothesis more efficient than active learning (Yang & Shafto, 2017).

2.3.2. Teaching-by-instruction

The next step to bring us closer to Self-Teaching model, in which the learner actively selects examples, is to consider the Teaching-by-Instruction model. In this model, rather than demonstrate to the learner the data point \((x, y)\), the teacher simply instructs the learner about which feature to intervene upon. We introduce this model for purely
pedagogical purposes here, although it could be of independent interest in other contexts. Formally, we modify Eqs. 5b and 6b to

\[P_L(h|y) \propto P(y|x,h)P_T(x|h)P_L(h), \]

\[P_T(x|h) = \sum_{y \in \mathcal{Y}} P_T(x,y|h) \propto \sum_{y \in \mathcal{Y}} P_L(h|x,y)P_T(x,y), \]

where we have rewritten the distribution \(P_T(x, y|h) \) as \(P(y|x, h) P_T(x|h) \) via the chain rule and dropped the subscript \(T \) from \(P_T(x, y|h) \) because the label is now provided by the world. The teacher’s choice of \(x \) now involves marginalization over possible labels \(y \) in \(P_T(x, y|h) \), resulting in \(P_T(x|h) \). In the same manner as Eqs. 5a and 5b, these equations are iterated until convergence, and then the teacher samples \(x \) from the converged \(P_T(x|h^*) \). Eqs. 5b and 6b differ only in the marginalization of the label, \(y \).

2.3.3. Knowledgeability

So far, we have assumed that the teacher has perfect knowledge of the true hypothesis. In order to have a model of self-teaching, and instead capture the learner’s lack of knowledge, we must relax this assumption. To do this, we introduce the concept of knowledgeability, which is modeled by the factor \(P(g|h) \), where \(g \in \mathcal{H} \) is the probability the teacher thinks \(g \) is the true hypothesis, assuming that \(h \) is the true hypothesis. More concretely, \(P(g|h_i) = a \) says that if the true hypothesis is \(h_i \), then the teacher thinks the true hypothesis is \(h_j \) with probability \(a \). A teacher with perfect knowledge of the true hypothesis is described by the teacher’s knowledgeability \(\delta(g|h) \), where \(\delta(g|h_i) = 1 \) when \(j = i \) and is 0 otherwise. This means that when the true hypothesis is \(h_i \), the teacher thinks that \(g_i \) is the true hypothesis with probability 1, and this is true for all hypotheses. Using this knowledgeability factor, we can write the Teaching-by-Instruction distribution of Eq. 6b in a more general form:

\[P_T(x|h) = \sum_{g \in \mathcal{H}} P_T(x|g)\delta(g|h). \]

Since the teacher knows the true hypothesis, \(\delta_T(g|h) \) is 1 only when \(g = h \), and 0 otherwise. Therefore, the marginalization over \(h \) with the delta function simply replaces \(g \) with \(h \), which recovers Eq. 6b exactly. While the generalization seems trivial in case of Teaching-by-Instruction because it takes the form of a delta function, when the knowledgeability factor is less concentrated, it offers a way to introduce uncertainty about the teacher’s belief about the true hypothesis into the teaching framework.

2.3.4. Self-teaching

Since there is no actual teacher in self-teaching, the learner does not have access to the true hypothesis. While the teacher’s knowledgeability factor is concentrated on the true hypothesis, the self-teacher’s knowledgeability must therefore reflect the learner’s
current belief. Thus, we set the self-teacher’s knowledgeability factor to $\delta_{ST}(g|h) = P_L(g)$. This says that no matter what the (hypothetical) true hypothesis is, the self-teacher believes that the distribution over true hypothesis is the same as the learner’s prior, rendering the self-teacher only as knowledgeable as the learner is. Following Eq. 7, we add the self-teacher’s knowledgeability factor into the Teaching-by-Instruction probability. This turns Eq. 6 into the Self-Teaching equations:

$$P_L(h|x, y) = \frac{P(y|x, h) \cdot P_T(x) \cdot P_L(h)}{\sum_{h' \in \mathcal{H}} P(y|x, h') \cdot P_T(x) \cdot P_L(h')}.$$ \hspace{1cm} (8a)$$

$$P_T(x) = \sum_{g \in \mathcal{H}} P_T(x|g) \delta_{ST}(g|h) = \sum_{g \in \mathcal{H}} P_T(x|g) P_L(g)$$

$$= \sum_{g \in \mathcal{H}} \sum_{y \in \mathcal{Y}} P_L(g|x, y) P_T(x, y) \frac{P_L(g)}{Z(g)}.$$ \hspace{1cm} (8b)$$

In Eq. 8b, the second equality has the same form as Eq. 7 but includes the self-teacher’s knowledgeability. To obtain the third equality, we expand the term $P_T(x|g)$ according to Eq. 6b. The term $Z(g) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} P_L(g|x, y) P_T(x, y)$ the normalizing constant that comes from changing the proportionality in Eq. 6b to an equality in Eq. 8b.

Note that the self-teacher’s knowledgeability, $P_L(g)$, does not depend on h. After marginalizing out g, the self-teacher’s selection in Eq. 8b depends only on x and not on h. Therefore, marginalization using the self-teacher’s knowledgeability factor converts the term $P_T(x|h)$ from the Teacher-by-Instruction model that is dependent on h into the term $P_T(x)$ that is independent of h. As in the teaching framework, we can compute an updated estimate of the Self-Teaching probability in Eq. 8b by feeding the result into the learner’s inference in Eq. 8a. However, because the teacher’s selection does not depend on h, this factor cancels out in Eq. 8a. The fact that the teacher’s selection is independent of h indicates that the learner gains no extra information about h from reasoning about the self-teacher’s selection, which is what one would expect. This is reflected by the fact that the self-teacher samples features to intervene according to Eq. 8b, which does not depend on h and hence cannot depend on the true underlying hypothesis, h^*. Computationally, this means that the recursive reasoning converges in one step, and only one pass through Eqs. 8a and 8b is needed to compute the probabilities in the Self-Teaching model.

Self-teaching makes predictions about which choices one should make to learn effectively, but differs in the objective and method to do so compared to the EIG model. To see this, we first examine the term $Z(g)$ in Eq. 8b. Since $P_T(x, y)$ is uniform, the term $Z(g)$ is the average probability that the learner will infer g as the true hypothesis if all pairs of (x, y) have equal probability to be observed. Thus, $Z(g)$ can be thought of as how “common” g is, and its inverse, $Z(g)^{-1}$, can be thought of as how “distinct” g is. The $Z(g)$ term appears in a ratio with the prior, suggesting that it is the distinctiveness relative to the prior that matters. Lastly, two expectations over h and y are taken to yield the final
intervention selection. Thus, the Self-Teaching model can be viewed as a hypothesis-testing model with the objective of confirming whether the underlying true hypothesis has high expected relative distinctiveness; that is, it selects x so that on average the learner will more likely observe distinctive hypotheses (as measured by $Z(g)^{-1}$) relative to the prior.

2.4. Remarks on the models

The learner’s inference equations in the three kinds of teaching models presented here—Eqs. 5a, 6a, and 8a—show that different learning settings make use of different sources of knowledge. In the Teaching-by-Intervention model, in addition to the learner’s prior, Eq. 5a includes the term $P_T(x, y|h)$, indicating that the teacher is the only source of information. In the Teaching-by-Instruction model, Eq. 6a includes the terms $P_T(x|h)$ and $P(y|x, h)$, indicating that information comes partly from the teacher and partly from interacting with the environment. In self-teaching, Eq. 8a only requires knowledge from $P(y|x, h)$, indicating that the environment is the only source of information. This is true of EIG and other active learning models, and it demonstrates that self-teaching introduces no additional source of information for inference.

A similar observation can be made for the intervention selection equations. The selections of intervention according to Eqs. 5b and 6b in the Teaching-by-Intervention and Teaching-by-Instruction models, respectively, both involve the underlying true hypothesis h^*, whereas the selections according to Eq. 4 and Eq. 8b do not. Thus, in a teaching setting, the learner benefits from the teacher’s knowledge of the true hypothesis, but this does is not true in the case of self-teaching.

The Self-Teaching model and EIG model have at least three important differences. First, the EIG model, as well as other conventional active learning models, only reason about the world, whereas the Self-Teaching model involves a meta-cognitive component that reasons about one’s own reasoning. Mathematically, this is expressed by the use of $P_T(x|g)$ and $P_L(g)$ in Eq. 8b, indicating that the learner is simulating herself (the $P_L(g)$ term) as a teacher (the $P_T(x|g)$ term) who reasons about herself as a learner. In contrast, the EIG model is solely a function of the learner’s prior and observation likelihood. Second, the reasoning behind the two approaches is quite different. The Self-Teaching model inherits reasoning about individual hypotheses from the teaching model (see the end of Section 2.3.1). This resembles a kind of hypothesis testing (see the end of Section 2.3.4), where interventions are chosen based on their expected relative distinctiveness with respect to individual hypotheses. In contrast, the EIG model is based on entropy, which is a quantity derived from averaging over hypotheses. Thus, the Self-Teaching model reasons more on the level of individual hypothesis, whereas the EIG model reasons more on the level of global changes in the beliefs about hypotheses. Third, mathematically, the Self-Teaching model involves only the rules of probability (sum, product, and Bayes’ rules), whereas the EIG model requires the minus and log mathematical operators to formalize the idea of reduction and uncertainty. This difference suggests that the Self-Teaching model cannot be readily reduced to any of the uncertainty-reduction models (e.g.,
those covered by Crupi et al., 2018). Despite these differences, the two intervention selection behaviors of these two models can be quite similar. In the next section, we characterize the similarities and differences through simulation.

3. Simulations

3.1. Tasks

We illustrate the Self-Teaching model with three tasks: two variants of a concept learning task and a causal learning task. In each of these tasks, we compare and contrast the predictions of the EIG model to our Self-Teaching model.

3.1.1. Concept learning

The first two tasks we consider are concept learning tasks, where the set of possible hypotheses are various line segments on an interval as illustrated in Fig. 3a,b. The goal of the learner is to discover the true hypothesis by querying features from different positions along the line. We consider two variants of the concept learning task which we call the boundary task and the line task.

In the boundary task, the hypothesis space consists of all of the unique concepts that are defined by the location of their boundary (e.g., Markant & Gureckis, 2014). Intuitively, a unique hypothesis has been identified when the learner observes two neighboring positions with different labels. In the line task, the hypothesis space consists of all possible lines with \(n \) features (Shafto & Goodman, 2008; Tenenbaum, 1999). While the set of concepts is similar in these two tasks, the value of selecting different features differs in either task due to the set of other hypotheses under consideration. For both concept learning tasks, the learner can only ask for one feature and observe one label at a time.

We use the following notation for describing the concept learning tasks. First, each hypothesis \(h \) in the concept learning task consists of a set of features \(\mathcal{X} = \{x_i | x_i = i, i = 1, \ldots, n\} \) and labels \(\{y_i | y_i \in \{0, 1\}, i \in \{1, \ldots, n\}\} \), where each feature, \(x_i \), refers to a position along the line segment, and each label, \(y_i \), refers to whether the line segment for a given hypothesis exists at that position or not. Thus, each hypothesis can be described as a set of data points \(h = \{(x_i, y_i)\}_{i=1}^n \). For this tasks, the likelihood \(P(y|x, h) \) is given by weak sampling, and it is equal to 1 when \(x = x_i, y = y_i \) and 0 when \(x = x_i, y \neq y_i \) for a given \(h \).

3.1.2. Causal learning

The third task we explore is a causal learning problem. In this task, the learner is presented with a causal system where the connections between the nodes are not shown, and the learner must determine which of two possible causal graphs is the true causal graph. Each causal graph consists of three nodes and the nodes are connected in different configurations (see Fig. 3c for one example). The learner can choose to intervene on one of the
three nodes, which will turn that particular node on, and will also cause other nodes that are connected downstream of the intervened node to turn on with high probability. Depending on the true underlying graph, intervening on different nodes produces different patterns of nodes turning on, which can help the learner determine which of the two graphs is the true hypothesis. We consider 27 possible pairs of causal graphs, matching the set used in Coenen et al. (2015), to compare the predictions of the EIG and Self-Teaching models for this task.

The notation for the causal learning tasks is similar to the concept learning tasks, albeit with a few minor differences. The hypotheses \(h \) in the causal learning tasks refer to the different graphs, and each pair of graphs form a hypothesis space \(\mathcal{H} \). The features in this task, \(x \), refer to the three nodes the learner can intervene on, thus \(x \in \{x_1, x_2, x_3\} \). The corresponding label, \(y \), refers to the state of the causal graph after intervening on feature \(x_i \). Thus, if the learner intervened on \(x_1 \), and this caused both \(x_2 \) and \(x_3 \) to turn on, then the corresponding label would be \(y = \{\text{intervened on}, \text{observed on}, \text{observed on}\} \). The set of possible labels for the causal learning task is the four possible sets of observations over two of the nodes when intervening on the third node, leading to twelve possible values of \(y \). For this task, the likelihood \(P(y|x, h) \) is the likelihood of observing a particular combination of states for all three nodes, as given by the joint probability over the directed graphical model when intervening on \(x \).

![Diagram](image-url)

Fig. 3. Examples of the three tasks to compare the Expected Information Gain and Self-Teaching models. We explore two kinds of concept learning which we call the *boundary task* (a) and the *line task* (b), which both involve concepts of varying line segments on a one-dimensional line. In both concept learning tasks, the set of features \(x_i \) refers to the different positions along the line. In the boundary game, the set of hypotheses is restricted to lines where there is a single boundary to disambiguate between hypotheses. On the other hand, the line task includes all possible single line concepts for a given number of features. In the *causal learning task* (c), the hypotheses \(h \) are two different causal graphs. The set of features \(x_i \) in this task refers to which node the learner chooses to intervene on.
3.2. Results

In this section, we explore via simulation how the predictions of our proposed Self-Teaching model fares when compared to EIG model. In particular, we explore similarities and differences between these models in their choice of particular features to intervene upon. For the boundary task, we ran simulations using both three features and eight features as shown in Fig. 4. The results show that the EIG model and Self-Teaching model both favor selecting the central feature, rather than features at the ends. This is true both in the three feature case (Fig. 4a) where the choice favored by either model is the central feature, and the eight feature case (Fig. 4b), where both models show a preference for the two middle features.

To further explore the behavior of both models in the boundary task, we conducted an additional set of simulations in the three feature case, considering how the EIG model and Self-Teaching model would determine which feature to select after observing a single data point. The plots showing the four different possibilities are shown in Fig. 5. For the four sets of observations, in each case the results show that the EIG model and Self-Teaching model both favor the same sets of features.

To further support the conclusion that the Self-Teaching model accords with the behavior of the EIG model, we consider predictions on a related, but different concept learning task. Results for the line task are shown in Fig. 6, where we considered hypothesis spaces that again consisted of either three or eight features. The results from these two simulations show different, yet interesting patterns of predictions that are qualitatively different from the boundary task. First, in the three feature case as shown in Fig. 6a, both the Self-Teaching and EIG models show a preference for the features on

![Fig. 4. Probability of selecting each feature for the boundary task with three features (a) and eight features (b). The horizontal axes represent the feature position along the line for each concept. The vertical axis represents the probability of selecting each feature. The predictions of the Self-Teaching model are shown in blue, while the Expected Information Gain (EIG) model is in red. Both the EIG and Self-Teaching models favor the selection of features in the middle for the boundary task for both three and eight features.](image-url)
the ends, rather than in the center like the boundary task results in Fig. 4. This suggests that Self-Teaching and EIG exhibit a similar sensitivity to the set of hypotheses and assign similar values to the features. Indeed, examination of the probabilities of selecting each feature in a line task with eight features in Fig. 6b reveals interesting differences compared to the boundary task with eight features in Fig. 4b. Here, we find that the EIG model peaks in two points away from the center, suggesting selecting the features at

Fig. 5. Probability of selecting each feature for the boundary task with three features after observing a single data point. The title of each figure is the first data point observed by the model. Two conditions are omitted, as observing either of these cases would lead the learner to infer the true hypothesis after a single step. After a single observation, both the Self-Teaching model (blue) and the Expected Information Gain model (red) show the same qualitative behavior in determining which feature to select next.
those points would provide more information than the center. Similarly, we also see that
Self-Teaching predicts the same qualitative behavior with two peaks.

So far, our results show that the qualitative behavior of Self-Teaching matches the EIG
model in two different concept learning tasks. However, is this always the case? Or are
there situations where the predictions of the Self-Teaching model differ from the EIG
model?

To explore this possibility, we also compared the EIG and Self-Teaching models in a
causal learning setting. We examined the predictions of both models across the 27 prob-
lems used in Coenen et al. (2015), as they provide a challenging test-bed of active learning
problems within the domain of causal learning. In particular, neither of the two models
(EIG and Positive-Test Strategy) considered in the paper alone explains the human data
particularly well, and we were interested in how the predictions of the Self-Teaching
model would compare to the EIG and Positive-Test Strategy models in this domain.

In this task, participants were presented with an unknown causal system (by showing
three nodes, but not the particular edges connecting the three nodes) and were asked to
figure out how the causal system worked. Participants were presented with two possible
hypotheses to explain the causal system (by showing two different sets of connecting
edges between the nodes). They were asked to choose one of the three nodes to intervene
on and observe how the system operated to determine which of the two possible hypothe-
ses was the true underlying causal system. For each problem, the proportion that each
node was selected across all participants was noted by Coenen et al. (2015).

![Fig. 6. Probability of selecting each feature in the line task with three features (a) and eight features (b). The
horizontal axes represent different features for each concept. The vertical axis represents the probability of
selecting the feature. Here, the qualitative pattern of predictions differs from the boundary game for both the
three feature case and the eight feature case. In the three feature case, both the Self-Teaching model (blue)
and the Expected Information Gain (EIG) model (red) have a preference for choosing the features on the
ends, rather than the central feature like the boundary task. Additionally, for the eight feature case, instead of
a single peak at the center, both the Self-Teaching model (blue) and the EIG model (red) have a preference
at two particular peaks away from the center.](image)
The behavioral data collected from Coenen et al. (2015) was then compared to two different active learning models: the EIG model, which we have described earlier, and a Positive-Test Strategy model (PTS), which is reminiscent of confirmation bias strategies for active learning. In this particular task, the behavior of the PTS model favors nodes which turn on as many other nodes as possible, by calculating the following:

\[
\text{PTS}_x = \max_x \left[\frac{\text{DescendantLinks}_{x,h}}{\text{TotalLinks}_h} \right].
\] (9)

Overall, the results from Coenen et al. (2015) showed that while both models captured participant behavior well in some of the problems, neither of the two active learning models alone was able to capture participant’s responses across all of the problems.

We computed the predictions for the Self-Teaching model (along with the EIG and PTS models) across the set of 27 causal learning problems, and results for these simulations are shown in Fig. 7. For each problem, the two causal graphs under consideration for each problem are shown in the top right of each plot and the predictions from each of the three models are plotted in different colors and symbols. We say that the behavior of the Self-Teaching model differs from the EIG model if the predictions diverge in a noticeable manner, and there are two kinds of situations where this occurs. First is when the predictions of the EIG model favors selecting a single feature with high probability such that the point lies on one of the vertices (Problems 8, 13, and 25). In these instances, the Self-Teaching model favors selecting the same feature as predicted by the EIG model (as both points lie within the same sector). The second case is when Self-Teaching favors selecting a different feature than the EIG model as evidenced by the predictions from the two models lying in two different sectors (Problems 4, 14, 21, and 22). In the latter cases where Self-Teaching prefers a different feature than the EIG model, the predictions of the PTS model also prefer the same feature that Self-Teaching does (except for Problem 14). Aside from these few cases, we consider the predictions of the EIG model and the Self-Teaching model to be matching, and we find that there is a strong amount of similarity between these two active learning models.

4. Discussion

People can learn from both active exploration and from other people. Yet research on active learning and teaching has largely been conducted independently, and to our knowledge, there exists no unified framework of these basic cognitive phenomena. These models differ in terms of both the learning objective and learning architecture, making unification an interesting and challenging problem. We have presented an integration by formalizing active learning as self-teaching. In our approach, active learning by self-teaching determines which features to select by imagining teaching oneself and averaging across all possible outcomes and hypotheses. Mathematically, this corresponds to adding
two simple marginalization steps to a previously proposed teaching model, with the resulting model being a formalization of active learning as self-teaching.

We compare our Self-Teaching model to a representative model from the active learning literature, EIG. Mathematically, the models yield quite different selection functions (see Sections 2.2, 2.3.4, and 2.4). Indeed, the differences are substantial enough that direct mathematical comparison is non-trivial. Inspection of the Self-Teaching model, however, shows that it seeks data that, in expectation, yield changes in beliefs about specific, distinctive hypotheses relative to random sampling. This expected relative distinctiveness differs from EIG in focusing on (a) specific hypotheses rather than the entire distribution and (b) hypotheses that are relatively distinctive in the sense that one would be unlikely to learn about through by random sampling rather than the divergence between prior to posterior.

A well-known challenge for existing models of active learning is that there exist relatively distinct sets of empirically observed phenomena. On one hand, there exists a robust literature that demonstrates that people’s selection of interventions is best explained by models that minimize global uncertainty or maximize global information (Crupi et al., 2018; Nelson, 2005). Second, others have argued that learners minimize entropy with respect to manageable subsets of the full hypothesis space (Bramley et al., 2017; Markant et al., 2016). A third approach has characterized active learning as a form of hypothesis testing with a bias toward confirmation (Klayman & Ha, 1987; Navarro & Perfors, 2011; Wason, 1960). The EIG model can explain the first two approaches to active learning.
(Markant & Gureckis, 2014; Nelson, 2005), but not the latter on hypothesis testing. In contrast, the Self-Teaching model can qualitatively capture aspects of these different empirical phenomena through expected relative distinctiveness. Our results show close correspondence with the EIG model on the boundary and line tasks (Figs. 4–6), while in the causal learning task it displays behavior that is close to a mixture of the EIG and positive-test strategy models (Fig. 7). This suggests that self-teaching can capture different forms of active learning that previously required different mathematical formalizations, and in a manner that is consistent with formal theories of teaching.

Unifying active learning and teaching as meta-reasoning has potentially far-reaching implications. A model that unifies the two would allow interpolation between these two extremes by manipulating the teacher’s knowledgeability. These interpolations allow direct comparisons between teaching from teachers of different knowledge levels, active learning, guided learning (Weisberg, Hirsh-Pasek, & Golinkoff, 2013), and collaborative learning between peers (Dillenbourg, 1999). More generally, unifying models of teaching and active learning may provide a first step toward unifying models of cognition about others (i.e., social cognition; Baker, Saxe, & Tenenbaum, 2011; Eaves & Shafto, 2012; Shafto et al., 2012) and cognition about oneself (i.e., meta-cognition) in a single meta-reasoning architecture. Research in psychology and neural science has long speculated about a close link between social cognition and meta-cognition, including the possibility of common developmental trajectory and neural substrates (Meltzoff, 2005). Work remains to explore how the current framework relates to more varieties of active learning models in the literature (e.g., Austerweil & Griffiths, 2011; Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003) and how much of human behavior it captures. Overall, based on the simulation results, there is reason to be optimistic that the different models and model behaviors can be tied together to yield an integrated account of human learning from people and the world.

Acknowledgments

This material is based on research sponsored by the Air Force Research Laboratory and DARPA under agreement number FA8750-17-2-0146 to P.S. and S.Y. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. This research was also supported in part by NSF SMA-1640816 to P.S.

Notes

1. Fig. 1a,b correspond to the boundary task in Fig. 3a, with additional details of the calculations in Appendix S1.
2. While there exist other approaches for active learning that optimize other objectives (e.g., Bramley, Lagnado, & Speekenbrink, 2015; Markant, Settles, & Gureckis,
2016; Nelson, 2005), in this paper, we primarily focus on EIG as a comparison to our self-teaching approach because of its widespread use.

3. This can be considered as a generalization of the knowledgeability factor introduced in Shafto et al. (2012).

4. This concept of distinctiveness of a hypothesis is the same distinctiveness introduced in Fig. 1.

5. For our simulations, the probability that an active parent node would turn on its direct descendants was set to be 0.8, and the background rate of a node turning on spontaneously was set to be 0.0. These settings were chosen to match the settings used in the simulations reported by Coenen, Rehder, and Gureckis (2015).

6. For all of the simulations, the EIG values were normalized so that they sum up to 1.

7. The source code to run the simulations and produce the figures in the Results section can be found at https://github.com/CoDaS-Lab/self-teaching.

8. In the active learning literature, the EIGs usually pass through a softmax decision function to yield the probabilities of intervention selection. Thus, the ordering of the preferences, rather than the values of the information gain, is the more meaningful quantity. The same is true with Self-Teaching.

9. We do not show the two sets of data points which end up discovering the true hypothesis from a single observation. After the learner observes $x = 1$, $y = 1$, or $x = 3$, $y = 0$, the only consistent hypothesis remaining is h_1 or h_4, respectively, as depicted in Fig. 3a, and thus, there is no additional benefit to exploring the predictions of either model after having observed either of these two cases.

10. We requested the data from the authors, but it was not made available; thus, our focus is to quantitatively compare Self-Teaching to the EIG and Positive-Test Strategy models of active learning.

References

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Appendix S1. A worked example showing the calculations performed by the Self-Teaching model and the Expected Information Gain model.