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Abstract

Machine learning often focuses on how best to in-
fer structure from data. Also important is the ability
to convey that structure to human users. We inves-
tigate a system for automating quantification, anal-
ysis, and presentation of data to human users. We
focus on the domain of natural scenes, an area in
which human performance has been well explored,
and can thus be used to inform choices of com-
putational tools. Informed by perceptual science,
we characterize a corpus of images in terms of the
statistics of their orientation distributions. In two
experiments, we compare mixture and topic mod-
els for analysis, and teaching-optimized versus av-
erage images for conveying model structure to peo-
ple. Using a categorization task, in Experiment
1, we find that, when subclusters are overlapping
and categorization difficult, examples selected to
teach the category structure lead to improved cate-
gorization performance relative to examples closest
to the mean. Experiment 2 further shows that mix-
ture models outperformed topic models and teach-
ing examples outperformed maximum likelihood.
By leveraging cognitively natural machine learning
methods to facilitate automatic analysis and sum-
mary of naturalistic data, this work has implications
for conveying both typicality and variability of ex-
periences in complex data.

1 Introduction
For decades the focus of machine learning has been to take
a prepared data set and, given some parameters, infer struc-
ture from it. While it is important to find such patterns in
data, it is also important to ensure that structure can be easily
accessed by humans attempting to make sense of the data. In-
deed, problems anywhere in the pipeline—from quantifying
experiences, to inferring structure, to interpreting and acting
on results—may to lead to incorrect outcomes. Thus, a crit-
ical problem for machine learning, data science, and artifi-
cial intelligence more generally is how to make choices about
each step so that the people at the end of the data analysis
pipeline understand the output and make correct decisions.

In this paper, we investigate automating the quantification,
analysis, and interpretation pipeline. Solving this problem
is a long term goal. Whereas typical machine learning and
data science approaches rely on highly educated experts to
implement and interpret analyses, we present a specific ex-
ample of a general approach based on leveraging humans’
uniquely powerful ability to learn from small amounts of data
generated by teachers. A naive computational learner infers
some structure in the data and a computational teacher selects
a small subset of the original data that best convey that struc-
ture to humans learners. We compare teaching decisions to
well-known alternative methods not motivated by human rea-
soning in the domain. Success on this project would greatly
increase the accessibility of data-driven decision making by
reducing the need for specific training.

We focus on a domain (natural scene perception) and task
(categorization) that have been well studied in the human
learning literature. This allows us to select methods of quan-
tifying and analyzing data that are strongly informed by ex-
isting science. Specifically, we leverage known human com-
petencies in perception, cognition and social learning. In
two experiments, we investigate different machine learning
methods—mixture models and topic models—and methods
of summarizing their results—selecting examples through
computational models of teaching or that capture the mean or
maximum likelihood estimate. Teaching has computational
support in the literatures on perception, cognition, and social
learning, while choosing data close to the mean or that maxi-
mize likelihood do not.

The paper unfolds in three sections. First, we discuss foun-
dational work in the areas of natural scene perception, cate-
gorization, and computational models of teaching. Second,
we describe the pipeline for quantifying images, extracting
categories from these data, and selecting images to teach the
resulting categories. Third, we describe two experiments that
investigate the performance of the approach with untrained
learners. Experiment 1 focuses on the last step of the pipeline,
the selection of images, via teaching or the maximum likeli-
hood data, to communicate the results to the user. Experiment
2 additionally manipulates model used to infer structure from
the data, comparing mixture models with topic models. The
results show that when the problem is difficult, computational
models of teaching outperform methods based on the mean
or maximum likelihood. Results also show that a more cogni-



Figure 1: Scene category results. Orientation-orientation scatter plots of random samples from the target model. Different
marker colors denote difference inner categories. The top row represents Indoor scenes and the bottom row represents Outdoor
scenes. The indoor scene categories have considerably greater overlap than the natural scene categories.

tively natural representation of the domain—modeling scenes
as mixture distributions—outperform a less cognitively natu-
ral, but otherwise effective, model in this visual domain.

2 Background
The natural-scene-category-teaching pipeline relies on find-
ings from three literatures: natural scene perception, catego-
rization, and computational models of teaching.

2.1 Natural scene perception
Natural scenes are semantically, structurally, and perceptually
complex, and this complexity is decomposed by the human
visual system, starting with low level features such as ori-
entation. There is a characteristically biased distribution of
oriented contours in natural scenes [1–3] and this anisotropy
is reflected in the visual cortex at one of the earliest levels of
visual processing [e.g. 4, 5]. Perception takes advantage of
the regular anisotropy present in natural scenes [6] making it
a logical structural property by which to quantify images as
several previous image categorization approaches have done
[7]. Therefore, it is sensible to quantify the structure of nat-
ural scenes in the orientation domain and determine if such
structure can be taught to human users.

2.2 Categorization
There is a long history of behavioral research on human cate-
gorization (see [8, 9] for reviews). Anderson [10] [also 11]
derived a model for learning an unknown number of cat-
egories, which was essentially a Dirichlet-process mixture
model [12, 13]. Rasmussen [14] later proposed an efficient
Gibbs sampling algorithm for this model. The Dirichlet pro-
cess mixture model framework has since been widely adopted
as a model of human category learning and in unsupervised
machine learning, and has been used to model scene cate-
gories in images [7, 15]. Extending this previous work into
communicating categories to human users is a logical next
step.

2.3 Computational models of teaching
Computational models of teaching formalize the purposeful
selection of examples whose goal is to enable the learner
to infer the correct hypothesis [16–18]. Shafto & Good-
man [16] introduced a Bayesian model of pedagogical data
selection and learning, and used a simple teaching game to
demonstrate that human teachers choose data consistently
with the model and that human learners make stronger infer-
ences from pedagogically-sampled data than from randomly-
sampled data (data generated according to the true distribu-
tion; [19, 20]). More recently, Eaves Jr. et al. [21] employed
advances in Monte Carlo approximation to facilitate tractable
Bayesian teaching. Although enjoying considerable evidence
in lab-based tasks where the target knowledge is selected by
the experimenter, no prior work has investigated the possibil-
ity that this approach may be used to facilitate human learning
from machine-derived knowledge.

3 Data analysis pipeline
3.1 Quantifying images
The first stage in the pipeline involves quantifying the com-
plex information in an image. To do this, we extract the ori-
entation information using a previously developed image ro-
tation method [see 2]. In this method, each frame is rotated
to the orientation of interest and the amplitude of the cardinal
orientations (horizontal and vertical) extracted and stored via
fast Fourier transform filtering. Repeating this process at dif-
ferent orientations allows each image to be condensed into a
series of 4 (Experiment 1) or 36 (Experiment 2) data points
representing the amount of oriented structure in the environ-
ment at four primary orientations 0, 45, 90, and 135 degrees
in global (Experiment 1) or local (Experiment 2) image re-
gions. We processed 200 images for both outdoor and indoor
environments. The resulting four-orientation data can be seen
in Figure 1.

The second stage involves inferring structure (categories)
from the orientation data so that it may be taught. We com-
pare two methods for image categorization: the infinite Gaus-



sian mixture model (IGMM) and latent Dirichlet allocation
(LDA).

Infinite Mixtures
In experiment 1, we represent scenes as categories in continu-
ous, multidimensional amplitude space. We model these cat-
egories as multidimensional Gaussians with mean µ and co-
variance matrix Σ. Learners must learn how many categories
there are, their means and covariance matrices, and must infer
of which category each datum is a member. We capture this
with the infinite Gaussian mixture model framework [IGMM
14].

Infinite mixtures allow for as few as one or as many as n
mixture components (categories). The IGMM infers an as-
signment, z, of data to categories, which is assumed to fol-
low a Dirichlet process–in this work, the Chinese restaurant
process–prior with concentration parameter α, CRP(α) [22].
The likelihood of the data, x, is then

`(x | θ) =

n∏
i=1

N (xi;µzi ,Σzi). (1)

where N (x;µ,Σ) is the Gaussian (Normal) density of x
given mean µ and covariance matrix Σ.

We place a conjugate, Normal inverse-Wishart prior on µ
and Σ [23],

Σ ∼ Inverse-Wishartν0(Λ−10 ), (2)
µ|Σ ∼ N (µ0,Σ/κ0). (3)

Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) is a bag-of-words model
for inferring the topics in corpora [24, 25]. Topic models
have been adopted for use with images [7, 15], by treating
each image as a document composed of visual words from
a number of visual topics, T , which we treat as categories.
To generate D documents from a W -word vocabulary under
LDA with parameters α, β ∈ (0,∞),

for all topics, t ∈ 1, . . . , T do
φt ∼ DirichletW (β)

end for
for all documents, d ∈ 1, . . . , D do

θd ∼ DirichletT (α)
for i ∈ {1, . . . , wd} do

z ∼ Discrete(θd)
wd|i ∼ Discrete(φz)

end for
end for
The likelihood of a corpus, C, given Φ = {φ1, . . . , φT }

under LDA is

`(C|T,Φ, α, β) =
∑
z

[(
D∏
d=1

DirCat(zd|α)

)
n∏
i=1

φ(zi)wi

]
,

(4)
where DirCat denotes the Dirichlet-categorical distribution,
the sum over z denotes the sum over all possible assignments
of the n words in the corpus to topics, zd indicates the assign-
ment of words in document d, and φ(zi)wi indicates the proba-
bility of the ith word under the topic to which it is assigned,
zi.

3.2 Bayesian teaching
Teaching implies choosing data, x, that lead a learner to a spe-
cific hypothesis, θ, which we shall refer to as the target. In a
Bayesian setting, teaching means choosing data in proportion
with their induced posterior density:

pT (x | θ) =
pL(θ | x)∫
pL(θ | x)dx

∝ `(x | θ)
m(x)

, (5)

where `(x | θ) is the likelihood of x under θ, m(x) =
∫
`(x |

θ)π(θ)dθ is the marginal likelihood of x, and the subscripts
T and L denote probabilities from the teacher’s and learner’s
perspective, respectively.

Teaching infinite mixture models
Given data x = x1, . . . , xn we wish to teach the assignment
of data to categories, z, and the category means and covari-
ance matrices. The IGMM framework assumes that learner
knows only the prior parameters (µ0, Λ0, ν0, and κ0) and that
all other quantities are unknown.

The teacher’s target model, θ, consists of K means and
covariance matrices, and an n-length assignment of data to
categories. To draw data from pT (x | θ), we employ random-
walk Metropolis sampling [26, 27]. An initial set of n data
are drawn from the target model, after which new data, x′, are
proposed by adding Gaussian noise to x. The new data are
accepted (x := x′) according to the acceptance probability:

p(x′ | x) := min [A, 1] , A =
`(x′ | θ)m(x)

`(x | θ)m(x′)
. (6)

To search for argmaxxpT (x | θ) one may employ simulated
annealing [28] by replacingA with A1/T , such that T goes to
zero with the number of Metropolis steps.

Exploiting conjugacy, we can calculate m(x) exactly for
a small number of data by enumerating over the set of pos-
sible assignment vectors, z ∈ Z, and for each z calculating
the product of the marginal likelihoods of the data in each
component given the prior parameters:

m(x) =
∑
z∈Z

CRP(z;α)

Kz∏
k=1

f(xi : zi = k | Λ0, µ0, ν0, κ0),

(7)
where Kz is the number of mixture components in z.

Teaching topic models
The number of topics is known under LDA, so we need
only teach the learner Φ = {φ1, . . . , φT }. We do not teach
the assignment of visual words to visual topics, z, and thus
marginalize over all possible z. The marginal likelihood for
LDA is∑
z

(
D∏
d=1

DirCat(zd | α)

)(
T∏
t=1

DirCat({wi : zi = t} | β)

)
.

(8)
There are Tn terms in the sum over assignments of words

to topics, thus neither Equation 4 nor Equation 8 can be com-
puted exactly for most real-word problems. We estimate
these quantities using sequential importance sampling [e.g.,
21, 29].



4 Experiments
Different types of visual experience were collected by wear-
ing a head mounted camera (NET CMOS iCube USB 3.0;
54.9o X 37.0o FOV) which sent an outgoing video feed to a
laptop. Videos were recorded as observers walked around dif-
ferent types of environments for variable amounts of time (a
nature preserve, inside a house, down-town in a city, around
a University, etc). Subsequently, every 500th frame of the
videos was taken as a representative sample of a given video
and sample images were sorted into purely natural, outdoor
scenes (no man-made structure) or scenes from indoor expe-
rience.

To derive a target distribution (means and covariance ma-
trices of subcategories), we applied expectation maximization
[EM; 30] to the orientation data from each setting (see Fig-
ure 1). EM found two categories for both indoor and outdoor
images. Although each image comprises information about
the amplitude of structure at specific orientations, there were
qualitative visual implications of the choice of images used
for teaching (see Figure 2).

The target visual topic model for LDA taken from the LDA
sampler state, Φ, at the 1000th iteration of Gibbs sampling.
The number of topics was set to 2 to match the number of
categories in the IGMM target model. The parameters, α and
β, were set to maximize the probability of the images under
two topics.

4.1 General Methods
To determine if our teaching model better conveyed the envi-
ronmental data to humans we ran a series of psychophysical
categorization tasks. If the teaching model captures cogni-
tively natural aspects of the selection of evidence for learn-
ing, then we would expect this group to perform better than
those provided examples that capture the center (mean) of the
category distribution. Rather than have subjects categorize
all possible images from the distribution, we focused on im-
ages that should be difficult to categorize – ambiguous im-
ages that lie somewhere between the two categories. We
compared categorization of ambiguous images based on ei-
ther one of the three best teaching pairs or one of the three
image pairs that captured the central tendency of each inner
category (the mean for Experiment 1; or most likely under
the model in Experiment 2). By using multiple pairs of im-
ages for comparison, we sought to eliminate any effects of
idiosyncratic semantic content (i.e. filing cabinets) in indi-
vidual images. Participants were recruited through Amazon
Mechanical Turk and paid for completing the task. Using a
completely on-line categorization task allowed us to test the
optimality of teaching categories to untrained observers. Par-
ticipants were presented with a machine-selected exemplar
pair (see examples in Figure 2) and 24 sequentially presented
ambiguous images which they were asked to categorize as
either category one (left) or category 2 (right). At least one
additional image was presented as an attention check; one of
the exemplar images was presented as a image to be catego-
rized to eliminate subjects who were not paying attention to
the task. The data from any subject (n = 43 total) who failed
to correctly categorize the attention checks was not used in
further analyses.

Figure 2: Examples of different exemplar pairs used in the
categorization experiment for subject reference. The top row
shows images used for outdoor scenes and the bottom row
shows images used for indoor scenes. The left column shows
the images that best capture the mean of the inner category
distributions while the right column shows the example pairs
picked by the model to teach the category.

4.2 Experiment 1
Experiment 1 focused on distinguishing indoor and outdoor
scene types and determining if the teaching model provided
better examples than images closest to the mean for each cat-
egory. The ambiguous images in this experiment were cho-
sen by calculating the Euclidean distance in orientation space
each image lay from each inner category mean. The summed
difference from each mean was then compared to the distance
between the category means and the middle third of images
closest to this value were labeled ‘ambiguous’. A total of ap-
proximately 60 subjects were run in each of the 12 possible
conditions (357 total). In order to minimize learning effects,
the first four trials for trials were considered training and all
results are based on performance on the last 18 images.

4.3 Results
In order to assess the results of the teaching model, we col-
lapsed across the three exemplar pairs by first determining
that there were no differences between them. Separate one-
way ANOVAs were run and, while there were no differences
for the indoor images, for outdoor images one pair in the
teaching condition showed significantly lower performance
than the other two runs F (2, 124) = 54.26, p < .001 (see
Figure 3). Moreover, the standard deviation in this condi-
tion (.19) was more than twice any of the other 5 conditions
(average = .093). Thirty percent of participants in this con-
dition performed above chance level, correctly categorizing
eleven images that were incorrectly categorized by most of



the participants who performed below chance. Interestingly,
these eleven images were of open fields, which only the high-
performers were grouping with the images selected for teach-
ing that contained bodies of water. Our method for quanti-
fying images based only on orientation content does not dis-
tinguish between fields and bodies of water (In Experiment
2 we explore a method that may map more closely to human
perception by quantifying orientation in regions).

Subsequent analyses focus on the remaining two pairs of
images for the teaching condition. To compensate for elim-
inating an entire pair of images from the outdoor condi-
tion, a random sample of equal size was extracted from the
pooled total subjects who completed the task with indoor im-
ages. Further statistical analyses confirmed no differences
across exemplar pairs between different runs within image
type (Outdoor vs Indoor) and exemplar condition (Teach vs
Mean) and thus the data from different exemplar pairs was
pooled.

We tested categorization performance for the remaining
teaching and mean pairs for outdoor and indoor images sep-
arately. Results plotted in Figure 3 show that participants
were able to more easily categorize outdoor images than in-
door images, F (3, 319) = 20.12, p < .001, which is con-
sistent with the increased cluster separation of the outdoor
categories (see Figure 1). Consequently, there were no dif-
ferences in categorization performance based on the teaching
exemplars as compared to the mean exemplars for outdoor
images, p = .90; all participants performed well presumably
because even the most ambiguous images were not especially
difficult to categorize.

For indoor images, participants’ categorization perfor-
mance was significantly better for the teaching images rel-
atively to the mean images, p < .001. These categories were
less well separated in orientation space (see Figure 1). Conse-
quently, the representative images selected for each category
had a greater potential influence. Indeed, the teaching images,
which are selected by the model to highlight the structure of
the category and to contrast with the alternative category lead
to better performance. Overall, the results of Experiment 1
indicate that for images whose categories are difficult to dis-
tinguish, the teaching model provides better exemplars for
human category learners.

4.4 Experiment 2
Given the results of Experiment 1, Experiment 2 focused only
on indoor images and used a higher-dimensional image quan-
tification method. Inspired by the spatial envelope quantifi-
cation of [7], we ran our global orientation analysis on nine
sub regions of each image from Experiment 1. Each image
is quantified into 36 orientation dimensions, corresponding
to the 4 primary orientations (0, 45, 90, 135) in each of nine
square image regions. We also sought to investigate whether
the IGMM classification method outperformed Latent Dirich-
let Allocation (LDA), which is less cognitively natural for
categorization but is widely used for image analysis [7, 15].
The 36 dimensional data was fed directly into the IGMM,
but was further quantized for the LDA model. Each image
region was treated as a word and the vocabulary for indoor
images was determined by K-means clustering. Each image

Figure 3: Results of psychophysical categorization experi-
ments. Error bars represent two standard error of the mean.

contained nine regions summarized by four-dimensional con-
tinuous orientation data. The data from the nine regions of all
of the two hundred images was assigned a cluster (word) by
K-means (200 images times 9 data per image resulted in 1800
data to K-means). Elbow plots revealed that K=20 was the
optimal vocabulary size. Each image was then a visual docu-
ment composed of nine visual words from a 20-word vocabu-
lary. To compare most directly with the IGMM we generated
a target model with two topics by running LDA on the visual
corpus. The images were then classified into one of two top-
ics based on the higher percentage of words belonging to a
given topic. Both the IGMM and LDA classification results
were then fed into the teaching model to determine the best
three image pairs for teaching each classification model. The
highest likelihood pairs from each model were used for com-
parison. Ambiguous images were selected by finding their
log-likelihood value under each category/topic (depending on
the model), subtracting the two values, and finding the cen-
ter third of images whose log likelihood difference score was
closest to zero. This process led to 55 images under each
model, 35 of which were identical across models. Approx-
imately 23 subjects ran each of the 12 conditions for a total
of 285 participants. Eleven were removed for incorrectly cat-
egorizing the attention checks. Preliminary analyses showed
no learning affects and thus all 24 trials were included in the
results.

4.5 Results
Again, we collapsed across the three exemplar pairs by first
determining that there were no differences between those
used within conditions (Teach vs. Likelihood). Separate one-
way ANOVAs determined that the only significant difference
between exemplar pairs was between pair 1 and pair 2 in the
GMM likelihood condition (F(2,68) = 3.59, p= 0.03). How-
ever, neither pair 1 nor pair 2 was significantly different from
pair 3 and thus all three exemplar pairs were collapsed into



overall teaching and likelihood conditions for each model.
The overall 2 (model) by 2 (condition) way between sub-
jects ANOVA showed significant main effects of teaching and
model, but no interaction: F(1,270) = 8.93, p = .003, F(1,270)
= 24.87, p < .001, and F(1,274) = 0.93, p = 0.34 respec-
tively. As can be seen in Figure 4, the main effect of teach-
ing is driven predominately by the higher accuracy scores in
the GMM condition; the LDA condition shows no difference
between teaching and likelihood exemplars. Accuracy scores
were also significantly higher under the GMM model than the
LDA model, in general. This suggests an additive improve-
ment in performance for analysis with the mixture model and
example selection with the teaching algorithm for these im-
ages on this task. Notably, performance in the GMM-teach
condition is similar to that in Experiment 1, suggesting that
characterizing images at the four orientations (cardinals and
obliques) was sufficient to capture information about the ori-
entation distribution in the images.

Figure 4: Results of Experiment 2. Error bars represent two
standard error of the mean.

5 Conclusion
We presented an approach to optimizing the data analysis
pipeline to minimize required expertise/training in data an-
alytics in order to make informed decisions and increase ac-
curacy. We leveraged known human competencies in percep-
tion, cognition and social learning as well as information clas-
sification methods from machine learning. We illustrated the
approach in a domain and on a task where human competen-
cies are well-investigated—scene perception and categoriza-
tion, respectively—which allowed us to select established so-
lutions to the problems of quantifying and analyzing the data.
We presented an experimental investigation into the use of
social learning methods, specifically a computational formal-
ization of teaching, to provide a generic method of translating
analytic results into human-understandable format. Because

these experiments relied on the entire data analysis pipeline,
our experiments necessarily tested both the efficacy of the
computational model of teaching and the methods of quan-
tifying and analyzing data.

Our results showed that human performance was signifi-
cantly greater than chance for the two problems tested and
that performance was related to the difficulty of the catego-
rization. Results also showed that the computational teaching
method performed well, exhibiting specific gains when the
data analysis problem was hard. In this particularly difficult
condition, the mean images failed to communicate the nec-
essary distinction between categories. This failure demon-
strates how a loss of information anywhere in the data anal-
ysis pipeline can indeed lead to incorrect outcomes. This
work is a step forward in solving the problem of how to make
choices along the pipeline such that users at the end are able
to make informative decisions about the data without exten-
sive training. It should be noted, however, that these results
are specific to this domain of visual teaching with a relatively
small sample size. The primary conclusion of this work is
that complete automation and optimization of the data analy-
sis pipeline is possible as long as one chooses a psychologi-
cally appropriate data model.

The results also highlighted known limitations in our data
analysis pipeline. Specifically, we quantified images exclu-
sively in terms of orientation content—one of the earliest
steps of visual processing. This underestimates people’s cate-
gorization abilities and our results revealed that while our ap-
proach performed better in general, there were specific cases
where this quantification hampered decision making. Two
notable instances are in the overall accuracy—we used only
the most difficult images—and the case of semantic differ-
ences in outdoor images, which represent information that
was not available to the models. Given the known limitations
of this approach, we take this to be a promising negative re-
sult and an area for future work. Other areas for future work
include generalization to domains that are less perceptually
natural (e.g. radiography), to a broader array of representative
decision making tasks, and exploring cases where analysis
uncertainty is passed through to the decision maker. Regard-
less, our results indicate that creating data analysis pipelines
based on human perceptual, cognitive, and social learning ca-
pacities is possible and a potentially fruitful direction for fu-
ture research.
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