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Abstract

Much of the knowledge people acquire is structured: number
systems, taxonomies; chemical structures. Learning using the
individual components that compose a structured theory may
be difficult due to the memory load induced by remembering
the entities and their relations. Though much research has
demonstrated the effects of ordering on category learning, to
our knowledge, none has been conducted on the learning of re-
lational structures. In three experiments we explore the effects
of different orderings in learning different relational structures,
finding that ordering affects learning, only orderings that tend
to eliminate simpler alternative structures are better, and that
the complexity of learning appears to be driven by the number
of relations, as opposed to the number of nodes.

The effects of data ordering on incremental learning are
well-documented. Ordering is of obvious importance in se-
quence learning in which a human or a machine must learn
the sequence of actions that produce a desired effect (e.g., lan-
guage, planning, skill acquisition, etc) (Clegg, DiGirolamo,
& Keele, 1998; Sutton & Barto, 1998). Ordering is studied
in instructional design in which students must learn multi-
ple interdependent topics. These topics could be presented
in a variety of orders that may lead to different learning out-
comes in different contexts (Ritter, 2007, p.19-39). Category
learning researches have attempted to formalize methods for
presenting data in optimal sequences. Elio and Anderson
(1984) found that to facilitate learning of novel categories,
it is best to start with low-variance exemplars and gradually
increase the variance, Medin and Bettger (1994) showed that
it is best to show successive examples that maximize the sim-
ilarity between exemplars, and Mathy and Feldman (2009)
suggest that it is better still to present exemplars in rule-based
order in which categories are further divided into subclasses
and members of subclasses are shown in succession.

Category learning has been a target for fine-tuned order
analysis because it is a well-formalized problem that can be
readily adapted for the lab setting. However, in both intuitive
experience and educational endeavors, people learn about re-
lations among concepts. For instance, people learn about the
relations among categories of living things that compose a
taxonomy, the relations among elements that compose the pe-
riodic table, and sequences of events that form a causal chain.
In each of these cases, the information is not just relational,
but can be characterized by an abstract pattern: trees, peri-
ods, or chains (Kemp & Tenenbaum, 2008). Recent work
by Kemp, Goodman, and Tenenbaum (2008b) has formalized
relational theories. Kemp (2008) investigated learning rela-

tional structures based on randomly sampled examples, find-
ing that simpler structures were faster to learn.

While there has been a considerable amount of research
into learning of concepts and categories (see Murphy, 2004;
Smith & Medin, 1981, for reviews), considerably less work
has been done to understand how people learning more rich,
relational structures (see Kemp, Goodman, & Tenenbaum,
2008a, 2008b) and as a result, ordering effects in theory learn-
ing are not well understood. Models of theory acquisition pre-
dict biases toward structures that are compactly-represented
in predicate notation (see Kemp et al., 2008a, 2008b)—biased
toward simpler structures—but do not explicitly explore the
implications of different orderings.

Consider, for example, the relational structure in Figure 1a.
The overall structure is a line. Each node (with the exception
of the two end nodes) has a single incoming and a single out-
going link. If one attempted to learn this structure, it would
require tracking 11 different names, one for each node, and
10 relations among the nodes. If these were independent bits
of information, remembering them might be quite difficult
(Miller, 1956). Because the relations are structured, it may
be possible to learn quite quickly. For example, one might
organize the information based on the structure—learning the
relations from left to right. In other structures it may not be so
obvious which ordering is best. When teaching relations that
form a tree (see Figure 1b) is it best to order examples from
root to leaves or from level to level? A more thorough anal-
ysis of which order is best is needed for these non-obvious
cases.

Motivated by previous research formalizing relational the-
ories, we investigate the hypothesis that better orderings are
those that rule out other abstract forms; orders that demon-
strate the underlying structure of the relations or do not sug-
gest other structures. First, to demonstrate order effects in
theory learning, in Experiment 1 we teach a linear structure
with linearly-ordered and random examples. In Experiment
2, we begin to speak to which orderings facilitate learning.
We teach a binary tree and compare learning outcomes un-
der different orderings inspired by graph-traversal algorithms.
Lastly, in Experiment 3 we teach a more complex structure
based on electron orbitals. We contrast orders based on how
electron orbitals are often presented in textbooks. Across ex-
periments we find that order affects learning but more im-
portantly that different, intuitively-sound orderings can have
vastly different effects on learning and that some orders are



Figure 1: The target structures. a) Linear structure for Exper-
iment 1. b) Binary tree structure for Experiment 2. The order
in which the relationships were shows are in the boxes. The
first entry in each box is the order in which that relationship
appeared in the breadth-first condition; the second entry is the
order in the depth-fist condition. c) Graphical representation
of the structure in Experiment 3. d) Table representation of
the structure in Experiment 3. Blue arrows trace the ordering
in which each cell was shown in the vertical order condition
and the red arrows trace the order of the diagonal condition.

as bad as no order at all.

Experiment 1
To establish the importance of ordering in relational learn-
ing, we first selected a simple linear structure consisting of 11
symbols (three-letter nonsense words) connected by 10 links.
We contrast performance given two different orderings: a lin-
ear order that presents links in order from left to right (see
Figure 1a), and a fixed random order. 1 Providing examples in
sequence maintains the linear structure, essentially ruling out
other structures. With each new example, the learner who re-
ceives sequenced examples incorporates new examples sim-

1Pilot studies showed that, when the random order varied from
trial to trial, structures of this complexity were frequently not learn-
able by participants. For this reason, throughout the paper we use
randomly chosen, fixed orders as a baseline.

ply by extending their theory. A learner who receives disjoint
examples must concurrently assemble several smaller disjoint
substructures of the full structure. We hypothesize that pro-
viding examples in order will lead to faster learning than pro-
viding examples randomly. We test this hypothesis by com-
paring the proportion of participants who pass as well as the
time and number of repetitions (trials) to successful recall of
the examples under random and linear ordering.

Methods
Participants Participants were 44 University of Louisville
undergraduates who completed the study for course credit.

Design Participants were randomly assigned to one of two
conditions: linear or random. In the linear condition, the re-
lationships were presented in order from left to right, as de-
picted in Figure 1a. In the random condition, participants
were presented examples in an order that was randomly de-
termined at the beginning of the experiment by shuffling the
ordered examples, and which was held constant across trials.

Procedure Participants completed the study on computers.
To begin, participants were told “You will be shown a se-
ries of relationships. Your job is to remember as many as you
can.” Participants then progressed through each example one-
at-a-time, at their own pace, until they had seen each example.
Examples were presented as sets of two symbols separated by
a right-directional arrow, e.g. SED→ VER. They were then
tested. Participants were presented with a single answer box
composed of two blank fields separated by a right directional
arrow ( → ). Participants could add additional answer
boxes. They were asked to fill in as many relationships as they
could remember. The study and test phases were repeated un-
til the participant had passed—had recalled each of, and only,
the 10 relationships—or had not passed after 25 minutes. The
assignment of symbols to nodes in each was constant across
participants.

Results
In the ordered condition, 20 of 22 participants passed and
in the random condition, 10 of 22 passed. The proportion
of passing participants varied significantly between condi-
tions (χ2(1,44) = 7.33, p = 0.007; see Figure 2a). The dif-
ference in the number of trials until completion between
passing participants in each condition was not significant
(Mord = 7.25,Sord = 4.24;Mrand = 10.5,Srand = 4.97; t(28)=
−1.869, p = 0.072; see Figure 2b). An independent samples
t-test revealed that of the participants who passed, those in the
ordered condition completed the study in less time than those
in the random condition (Mord = 625 sec, Sord = 339 sec;
Mrand = 935 sec, Srand = 370 sec; t(28)=−2.289, p= 0.030;
see Figure 2c). Taken together, systematic ordering of rela-
tions led to a marked decrease in difficulty of learning.

We also investigated omission errors and the learning tra-
jectories to characterize why the ordered condition led to
improved performance. Omissions of relations and sym-
bols were calculated by dividing the number of unique (cor-



Figure 2: Experiment 1 results. a) Proportion of participants who passed for ordered (left) and random (right). b) Mean and
standard error number of trials completed by passing participants. c) Mean and standard error time in seconds taken by passing
participants. d) Mean proportion of relationship omissions over trials. e) Mean proportion of symbol omissions over trials. f)
Proportion correct (Y-axis) at proportion complete for passing participants in the ordered (red) and random (blue) conditions
with first- and third-order polynomial fit lines, respectively.

rect) relations or symbols recalled by the participant by the
total number of relations or symbols. Figure 2d and e
shows omission errors for relations and symbols. Indepen-
dent samples t-tests reveal no effect of condition on mean
omission of relationships (Mord = 0.37,Sord = 0.10,Mrand =
0.33,Srand = 0.05, t(28) = 1.141, p = 0.264) or symbols
(Mord = 0.18,Sord = 0.06,Mrand = 0.12,Srand = 0.04; t(28)=
2.561, p = 0.016), suggesting no marked differences in errors
across conditions2.

To compare the progression of learning under different or-
derings, in Figure 2f we plot the scaled learning curves. We
constructed scaled learning curves for each participants by
dividing the number of correct responses at each trial by the
total number of relationships in the sequence; we scaled time
to completion by dividing a participant’s trial numbers by the
number of trials taken by that participants. For example, if
a participant correctly recalled 2, 4, 8, and 10 relationships,
their y-values would be [.2, .4, .8,1] and their x-values would
be [0, .334, .667,1]. Polynomial lines were fit to the data in
each condition. The order of the fit line was that which mini-
mized the Bayesian Information Criterion (BIC): the quantity
(n lnSSE/n+ p lnn), where n is the number of data points,
SSE is the sum of squared error between data and the polyno-
mial line, and p is the order of the polynomial. A first-order
polynomial (i.e. a straight line) provided the best fit in the or-
dered condition, suggesting a steady learning progression. In
contrast, a third-order polynomial best fit the random condi-
tion, consistent with an uneven learning progression.

Presenting data in linear order may help because it main-
tains the structure. Presenting relations disjointly may lead
learners to infer a disjoint structure. Disjoint structures are
not as compactly represented because disjoint sets essentially
correspond to special cases. Instead of having to remember
VER→ SED and SED→ STO individually, the learner di-
rectly observes VER→ SED→ STO. If the learner remem-
bers the sequence of the nodes, she is able to reconstruct the
structure.

2Errors of commission were rare, generally one every ten trials,
and were therefore not analyzed.

The linear structure is almost trivially simple. In order to
speak to which orderings are best we must turn to richer struc-
tures that are more representative of real-world structures and
which can be presented in several reasonable orders.

Experiment 2
In Experiment 2, we turn our attention to a more interest-
ing case of relational learning, inspired by the problem of
learning biological taxonomies. Specifically, we explore or-
dering effects in a binary tree and propose two non-random
orderings inspired by graph-searching algorithms: depth-first
(DFS) and breadth-first search (BFS). DFS traverses a graph
by traveling down a path until it reaches a dead end (a leaf in
our tree) and then back-tracks; BFS visits each node adjacent
to the current node before proceeding deeper (see Figure 1b).
In this case, BFS better represents and maintains the binary
tree structure with each example, therefore we hypothesize
that BFS will lead to faster learning.

Methods
Participants were 62 University of Louisville undergraduates
who completed the study for course credit. The procedure
was identical to that of Experiment 1 barring the different
data structure and the additional ordering condition. The tree
structure to be learned was composed of 11 symbols and 10
links: the same number of symbols and links as the linear
structure in Experiment 1. The same nonsense words used in
Experiment 1 were used in Experiment 2. The random order
was individually determined for each participant by shuffling
the examples before beginning the experiment, during which
the order remained constant.

Results
In the BFS condition, 12 of 20 participants passed; in the
DFS condition 15 of 21 participants passed; and in the ran-
dom condition, 13 of 21 participants passed. The propor-
tion of passing participants did not vary between conditions
(χ2(2,62) = 0.68, p = 0.71). Independent samples T-test
revealed that of the participants who passed, those in the



Figure 3: Experiment 2 results. a) Proportion of participants who passed for breadth-first search (left), depth-first search
(center), and random (right). b) Mean and standard error number of trials completed by passing participants. c) Mean and
standard error time in seconds taken by passing participants. d) Mean proportion of relationship omissions over trials. e) Mean
proportion of symbol omissions over trials. f) Proportion correct (Y-axis) at proportion complete for passing participants in the
breadth-first (red), depth-first (blue) and random (green) conditions with first-order polynomial fit lines, respectively.

BFS condition passed in fewer trials than those in the DFS
condition (MBFS = 7.67,SBFS = 3.42,MDFS = 11.4,SDFS =
5.4; t(25) = −2.08, p = 0.048) and those in the random
condition (Mrand = 12.08,Srand = 4.52; t(23) = −2.73, p =
0.012). Of the participants who passed, those in the BFS
condition passed more quickly than those in the Random con-
dition (Mrand = 1042sec,Srand = 357sec; t(23) =−2.25, p =
0.035). While there was a trend toward faster completion in
the BFS condition versus the DFS condition, the difference
was not significant (MBFS = 734sec,SBFS = 313sec,MDFS =
932sec,SDFS = 304sec; t(25) =−1.61, p = 0.119).

Omission errors for relations and symbols are shown
in Figure 3d and e. As in Experiment 1, one-way
ANOVA’s reveal no affect of condition on mean omission
of symbols (MBFS = 0.16,SBFS = 0.06,MDFS = 0.18,SDFS =
0.05,Mrand = 0.15,Srand = 0.03;F(2,39) = 1.533, p =
0.229) or relationships (MBFS = 0.31,SBFS = 0.12,MDFS =
0.36,SDFS = 0.12,Mrand = 0.33,Srand = 0.08;F(2,39) =
0.859, p = 0.432).

A first-order polynomial provided the best fit in each con-
dition, suggesting a steady learning progression.

We suspect that the absence of an effect of condition on
the proportion of participants who passed is related to the dif-
ficulty of representing the tree compactly. That is, the tree
structure inherently places a higher memory load on partici-
pants. The effect of ordering is only apparent in the rate of
learning. Those in the BFS condition learned more quickly
than those in the DFS and random conditions. To specu-
late, perhaps to learn the tree in the time allotted requires a
high working-memory capacity and that these high-working-
memory-capacity individuals were helped by the ordering.
That is, these individuals were able to hold the individual re-
lations in memory but were best aided by the BFS ordering in
finding their arrangement.

Experiment 3
In Experiment 3, we consider a real-world problem from the
domain of chemistry: learning atomic orbitals. Two alterna-
tive orderings stand out. In textbooks orbitals are often listed

on a grid which can be traversed horizontally, vertically, or
diagonally. We contrast vertical and diagonal ordering. Di-
agonal ordering introduces symbols quickly but presents the
relationships disjointly; vertical ordering introduced symbols
more slowly while exposing learners to the relationship be-
tween symbols. The diagonal ordering also places a higher
early memory load on learners by presenting relationships in
an order that does not eliminate alternative structures expedi-
ently. For this reason, we hypothesized that diagonal ordering
would be more difficult to learn from than vertical ordering
and at least as difficult, if not more so, than random ordering.

Methods
Participants were 59 University of Louisville undergraduates
who completed the study for course credit.

The procedure was identical to that of Experiment 1 bar-
ring the different data structure and the additional order-
ing condition. The orbital structure was composed of 8
symbols—a subset of the symbols from Experiments 1 and
2—and 10 links. The random order was individually deter-
mined for each participant by shuffling the examples at the
beginning of the experiment after which the order remained
constant.

Results
In the vertical ordering condition, 17 of 19 participants
passed; in the diagonal ordering condition, 10 of 20 partic-
ipants passed; and in the random ordering condition, 12 of
20 participants passed. The proportion of passing partic-
ipants varied significantly between conditions (χ2(2,59) =
7.28, p = 0.026). An independent samples t-test showed
that, of the participants who passed, participants in the ver-
tical ordering condition passed in fewer trials than those
in the diagonal-ordering condition (Mvert = 6.75,Svert =
2.42,Mdiag = 11.9,Sdiag = 4.28; t(25) = −4.05p < 0.001)
and those in the random ordering condition (Mrand =
12.25,Srand = 4.56; t(27) = −4.26, p < 0.001). Partici-
pants in the vertical-ordering condition passed in less time
than participants in both the diagonal ordering condition



Figure 4: Experiment 3 results. a) Proportion of participants who passed for vertial (left), diagonal (center), and random (right)
orderings. b) Mean and standard error number of trials completed by passing participants. c) Mean and standard error time
in seconds taken by passing participants. d) Mean proportion of relationship omissions over trials. e) Mean proportion of
symbol omissions over trials. f) Proportion correct (Y-axis) at proportion complete for passing participants in the vertical (red),
diagonal (blue), and random (green) conditions with with, first-, third-, and third-order polynomial fit lines, respectively.

(Mvert = 664sec,Svert = 351sec,Mdiag = 1118sec,Sdiag =
282sec; t(25) = −3.48, p = 0.002) and the random order-
ing condition (Mrand = 1073sec,Srand = 320sec; t(27) =
−3.20, p = 0.003).

Omission errors for symbols and relations are shown
in Figure 3d and e. One-way ANOVA’s reveal an ef-
fect of condition on mean omission of symbols (Mvert =
0.09,Svert = 0.04,Mdiag = 0.04,Sdiag = 0.02,Mrand =
0.07,Srand = 0.04;F(2,39) = 7.711, p = 0.002) but not re-
lationships (Mvert = 0.32,Svert = 0.10,Mdiag = 0.25,Sdiag =
0.07,Mrand = 0.27,Srand = 0.11;F(2,39) = 1.846, p =
0.172). Bonferroni-corrected post-hoc comparisons revealed
that participants in the vertical ordering condition committed
significantly more symbol omission errors than participants
in the diagonal ordering condition (95% CI [0.019 0.091]).

A first-order polynomial provided the best fit in the
vertical-ordering condition, suggesting a steady learning pro-
gression. In contrast, a third order polynomial best fit the di-
agonal and random conditions, consistent with uneven learn-
ing progression.

In the case of orbitals, ordering has a clear effect. Pre-
senting relationships vertically leads to quicker learning but
causes learners to produce more errors along the way. This
results suggests that ordering not only affects the speed of
learning but may affect on which parts of the theory learn-
ers focus. Here, the diagonal ordering exposes learners to
the symbols most quickly. If learners expect teachers to be-
gin with important information, learners may allocate their
efforts more heavily to remembering the symbols rather than
the relationships among the symbols. Symbol-focused order-
ings like this may result in fewer errors early on, but because
they place such a high emphasis on symbols rather than struc-
ture, may damage learners’ ability to learn structure, in turn
damaging their ability to compress the information and slow-
ing learning.

General Discussion
We investigated the effects of ordering information on rela-
tional learning across three different structures: a line, a tree,

and the real-world case of electron orbitals. Based on previ-
ous theory, we hypothesized that orderings that eliminated
simpler, alternative-domain structures would lead to faster
learning. Across all three experiments, the results confirmed
this basic hypothesis.

We also attempted to characterize differences in learning
across the conditions by analyzing errors of omission and
learning curves. Though ordering affected errors of omis-
sion in Experiment 3, over experiments, errors of omission
provide little evidence for systematic differences. Learning
curves provide evidence that learning follows a linear pro-
gression when provided with better orderings, while worse
orderings lead to non-linearities in learning. These non-
linearities capture a temporary leveling that occurs midway
through learning. This is consistent with the idea that par-
ticipants may realize the structure midway through, which re-
quires a reconceptualization of the domain. Systematic inves-
tigations of why orderings facilitate learning are an important
direction for future work.

Previous results suggest that learning times are dependent
on the type of structure (De Soto, 1960). Looking across ex-
periments, our results show no effects of structure. One-way
ANOVAs show that among participants who passed, the time
and number of trials until completion for participants in the
random and poorly-ordered conditions (random, DFS-tree,
and diagonal-orbital) did not vary (Ftime(4, 58)=0.63, p=0.64;
Ftrials(4, 58)=0.13, p=0.97), nor did time and number of tri-
als for participants in the better-ordered conditions (Ftime(2,
47)=0.35, p=0.74; Ftrials(2, 47)=0.29, p=0.75). This suggests
that the time to learn was not related to the structure, nor to
the number of nodes.

The orderings that best preserve the structure with each
subsequent example facilitated learning. This ordering has
two related effects: it rules out alternative hypotheses and re-
duces memory load. For example in Experiment 3, the good
ordering reduces memory load early on by minimizing the
number of symbols introduced and by allowing for a more
compact representation of the structure, which according to a
representation-length bias, should reduce inferences over al-



ternative structures (Kemp et al., 2008a).
It is also possible that participants expect orderings that

facilitate learning and treat bad orderings as misleading. If
participants assumed that they were being taught a structure,
in the sense that examples had been chosen by a teacher, then
bad orderings could have lead them to incorrect hypotheses
because teachers should produce examples in a way that opti-
mally teaches the target structure (Shafto & Goodman, 2008;
Shafto, Goodman, & Griffiths, 2014).

Here we have focused on one way to facilitate learning: by
ordering the information. However, in textbooks, structures,
such as atomic orbitals and taxonomic trees, are often pre-
sented as a whole, in figures and in tables. This raises two
questions. First, how does ordering compare with holistic de-
pictions such as figures? Second, given data in figure format,
in what order do learners choose to review the items?

Recent developments in formalizing and modeling learn-
ing of structured relations and intuitive theories open the door
to investigating knowledge that more closely approximates
intuitive theories and the scientific theories taught in educa-
tional settings. Understanding how to facilitate learning in the
context of these richer structures is a fundamental theoretical
question that is of great potential practical importance. For
example, constructing a formal framework that chooses ped-
agogically optimal orderings of arbitrary concepts may take
some of the guess work out of instructional design. We have
focused on one technique for facilitating learning, finding that
ordering information can lead to sharply decreased learning
times. There are many other possibilities, and it is important
for future work to investigate how to leverage theoretical ad-
vances in knowledge representation to practical problems of
facilitating learning in more realistic settings.
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