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Abstract
Machines, not humans, are the world’s dominant
knowledge accumulators but humans remain the
dominant decision makers. Interpreting and dis-
seminating the knowledge accumulated by ma-
chines requires expertise, time, and is prone to fail-
ure. The problem of how best to convey accu-
mulated knowledge from computers to humans is
a critical bottleneck in the broader application of
machine learning. We propose an approach based
on human teaching where the problem is formal-
ized as selecting a small subset of the data that will,
with high probability, lead the human user to the
correct inference. This approach, though success-
ful for modeling human learning in simple labo-
ratory experiments, has failed to achieve broader
relevance due to challenges in formulating gen-
eral and scalable algorithms. We propose general-
purpose teaching via pseudo-marginal sampling
and demonstrate the algorithm by teaching topic
models. Simulation results show our sampling-
based approach: effectively approximates the prob-
ability where ground-truth is possible via enumera-
tion, results in data that are markedly different from
those expected by random sampling, and speeds
learning especially for small amounts of data. Ap-
plication to movie synopsis data illustrates dif-
ferences between teaching and random sampling
for teaching distributions and specific topics, and
demonstrates gains in scalability and applicability
to real-world problems.

1 Introduction
Machines are increasingly integral to society. Where ex-
pert human intuition once was, algorithms are increasingly
present. Learning algorithms are used to learn complex hy-
potheses from complex data, which are used to augment hu-
man intuition. This paradigm creates a bottleneck where
the knowledge accumulated by machines depends on highly
trained human experts to interpret, and to conveying to hu-
mans. This remains a barrier to the broader usefulness of ma-
chine learning. While machines can communicate perfectly
among themselves by exchanging bits, humans communicate

with data—they teach. The purposeful selection of data plays
a featured role in theories of cognition [1], cognitive devel-
opment [2], and culture [3]. In each of these cases, teaching
is conceived of as purposeful, rather than random, selection
of small set of examples, with the goal of facilitating accurate
inferences about a body of knowledge.

The question of how to model teaching has also appeared
across literatures: cognitive scientists have proposed and in-
vestigated probabilistic models of optimal example selection
[4–7]; algorithmic teaching researchers have proposed deter-
ministic methods to select examples that rule out confusable
concepts [8, 9]; and machine learning researchers have be-
come interested in machine teaching [10, 11]. These paths
of research vary in the details, but share the same goal: to
facilitate learning by optimizing input to learners.

Previous approaches are either tailored to a specific, cir-
cumscribed domains or propose a general mathematical for-
malization that is not scalable. Zhu [10] offers a formalization
for exponential family distributions [see also 7]. Mei & Zhu
[12] cast teaching as bilevel optimization, which is NP-hard,
and offer a solution for the limited case when the data are dif-
ferentiable and the learner’s objective function is convex and
regular. Shafto & Goodman [4] and Zilles et al. [9] offer gen-
eral formalizations for probabilistic and deterministic infer-
ence, respectively, but suffer from computational complexity
that renders them inapplicable for real-world application.

We propose a simple, general framework for selecting ex-
amples to teach probabilistic learners. The framework lever-
ages advances in sampling-based approximations, specif-
ically pseudo-marginal sampling coupled with importance
sampling, to offer a general purpose approximation to the
Bayesian normalizing constant that is required to teach proba-
bilistic learners. We demonstrate the efficacy of the approach
on probabilistic topic models. The results show that the dis-
tribution of teaching data differ significantly from the data
likelihood, that the teaching data improve learning especially
when learning from a small numbers of examples, and that
teaching can be optimized for a variety of tasks, while scal-
ing to problems markedly more complex than possible under
previous, general-purpose, teaching algorithms.
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2 Background
2.1 Bayesian teaching
A teacher generates data, x, to lead a learner to a specific
hypothesis, λ. A teacher must consider the learner’s posterior
inference, πL(λ|x), given every possible choice of data, thus
learning is a sub-problem of teaching. The teacher simulates
a learner who considers the probabilities of all hypotheses
given that data,

pT (x | λ) =
πL(λ | x)∫

x
πL(λ | x)dx

∝ `L(x | λ)

mL(x)
. (1)

Where the subscripts T and L indicate probabilities attached
to teacher and learner, respectively; `(x | λ) indicates the
liklelihood of the data; and m(x) =

∫
`p(x, λ)dλ is the

marginal likelihood.

2.2 Topic models via Latent Dirichlet Allocation
Latent Dirichlet Allocation [LDA; 14] is a popular formal-
ization of topic models. Under LDA, documents are bags of
words generated by mixtures of a fixed number topics. To
generate a set of D documents from T topics with W distinct
words:

for all topics, 1, . . . , T do
φt ∼ DirichletW (β)

end for
for all documents, 1, . . . , D do

θd ∼ DirichletT (α)
for i ∈ {1, . . . ,Wd} do

z
(d)
i ∼ Categorical(θd)
w

(d)
i ∼ Categorical(φ(d)

zi )
end for

end for
where Wd is the number of words in the document d, z(d)

i is
the topic from which the ith word in document d was gener-
ated, andw(d)

i is the ith word in document d. The variables of
interest are the topics, Φ = {φi, . . . , φT } and the topic mix-
ture weights Θ = {θ1, . . . , θD}. Each φ is a vector with an
entry for each of the W words in the vocabulary; the wth en-
try is the probability of word w occurring in the topic. Each
document is associated with a θ. The tth entry of θ is the
probability that a word in document d was generated from
topic t.

The full joint distribution is,

p(z,w,Φ,Θ|α, β) = p(z|Θ)p(w|Φ)p(Φ|β)p(Θ|α).

Exploiting conjugacy, we can integrate out φ and θ leaving,

p(z,w | T, α, β) =

D∏
d=1

DirCat(z(d)|α)

T∏
t=1

DirCat(w(t)|β),

where DirCat is the Dirichlet-Categorical distribution. Given
a k-length vector of counts, x,

DirCat(x | α) =
Γ
(∑k

i=1 αi

)
Γ
(
n+

∑k
i=1 αi

) k∏
i=1

Γ (xi + αi)

Γ (αi)
.

This allows one to define an efficient Gibbs sampler for z that
only requires maintaining a set of counts [15]. The proba-
bility of word i being assigned to a specific topic (zi = t)
given the words in the documents, w, and the assignment of
all other words, z(−i), is,

p(zi = t | z(−i),w) ∝
(
n

(−i)
d,t + αd

) n
(−i)
t,w + βw∑

w′ n
(−i)
t,w + βw

,

(2)
where n(−i)

d,t is the number of words—less word i—in docu-

ment d assigned to topic t, n(−i)
t,w is the number of instance of

vocabulary word w—again, less word i—assigned to topic t.

3 Teaching topics with documents
Our goal is to produce or choose documents to teach a topic
model, φ, to an LDA learner. The learner is assumed to know
the prior parameters, α and β, and the number of topics; but
must marginalize over all possible assignments of N words
in D documents to T topics, z ∈ Z, and all possible Θ. The
probability of documents under the teaching model is,

pT ({d1, . . . dD}|Φ, α, β) ∝
∏
φ∈Φ

f(φ | β)

×
∑
z∈Z

((
D∏
d=1

DirCat(zd | α)

)
n∏
i=1

f(wi | φzi)

)

÷
∑
z∈Z

(
D∏
d=1

DirCat(zd | α)

)(
T∏
t=1

DirCat(wt | β)

)
. (3)

3.1 Approximating the LDA posterior
Computing the above quantity requires O(TN ) computa-
tions; because in all but the simplest scenarios this is impos-
sible, we must approximate it.

Importance sampling is a common approach to estimating
intractable integrals (or sums) by re-framing them as expecta-
tions with respect to an easy-to-sample-from importance dis-
tribution, q. The integral of p over λ is estimated by simu-
lating λ̄1, . . . , λ̄M from q(λ) and taking the arithmetic mean
of the importance weights, p/q. For example, to estimate the
marginal likelihood,

m(x) =

∫
`(x|λ)π(λ)dλ ≈ 1

M

M∑
i=1

`(x|λ̄i)π(λ̄i)

q(λ̄i)
, λ̄ ∼ q.

When estimating the marginal likelihood, the importance
distribution should be close to the posterior because areas
with high posterior density contribute more. In the case of
LDA, the naive approach of drawing z from a uniform cat-
egorical distribution is inefficient and does not afford scal-
ing to real-world problems; many of the importance sam-
ples will come from low probability regions because the im-
portance distribution will be far flatter than the target. A
better approach is to use the collapsed Gibbs sampler in
Equation 2 to implement a sequential importance sampler
[SIS; 16] from which proposals are drawn by incrementally
generating z. Starting with a random value for z1, draw



z2 | z1, {w1, w2}, α, β, according to Equation 2, then draw
z3 | {z1, z2}, {w1, w2, w3}, α, β and so on,

q(z) =

n∏
i=2

p(zi|{z1, . . . , zi−1}, {w1, . . . , wi}, α, β).

SIS performs significantly better than naive importance
sampling, especially in sparser models (as α and β approach
zero). We evaluated the accuracy and efficiency of uniform
and sequential importance sampling by comparing their es-
timates (after 1000 samples) against the true teaching prob-
abilities. We generated 512 pairs of documents and three-
topic models from LDA with α = β = .5; each document
contained five words from a five-word vocabulary. Given
these parameters, the number of terms in the sum over Z
in Equation 3 is 310 = 59049. Figure 1A, B, and C shows
the accuracy of the samplers and indicates that SIS has much
lower variability. Figure 1D compares the effective sample
size (ESS, [17]) of the samplers. ESS represents the num-
ber of unweighted samples to which theM weighted samples
are equivalent—higher is better. ESS can be calculated as
M/(1 + Varq(w)), where Varq(w) is the sample variance of
the importance weights. For these simulations, SIS had an
average ESS of 890.71, while uniform importance sampling
had an ESS of 238.50.

3.2 Pseudo-marginal sampling
To generate documents from the teaching distribution, we
employ pseudo-marginal sampling [18, 19], which allows ex-
act Metropolis-Hasting to be performed using approximated
functions. The standard Metropolis-Hasting algorithm [20,
21] generates samples, y, from a probability distribution, p,
that is known to a constant, p(y) = kf(y), by drawing new
values, y′, from a proposal distribution, q(y → y′), and ac-
cepting y′ with probability min[1, A] where,

A :=
f(y′)q(y′ → y)

f(y)q(y → y′)
. (4)

If f is difficult to calculate, the pseudo-marginal approach
allows one to replace f in Equation 4 with an approximation
f̂ . Pseudo-marginal sampling works provided f̂(y) = γf(y),
where γ is the bias or weight of the approximation and the ex-
pected value of the weights is constant. The weights are im-
plicitly treated as a random variable in a joint distribution and
marginalized away, leaving the target. We will use pseudo-
marginal sampling coupled with SIS to generate documents
under the teaching model; when we do no need to generate
documents, we use only approximation.

4 Scalability
The posterior approximation is the main factor in scaling
Bayesian teaching. For topic models, our chosen approxi-
mation method, SIS, requires only O(nT ) arithmetic opera-
tions and n multinomial random numbers (Equation 2); and
has been shown to yield high ESS. Because each sample is
generated independently, importance sampling is embarrass-
ingly parallel. However, as the number of words and topics
increases, the number of samples needed to approximate the

Figure 1: Comparison of teaching probability approxima-
tions. Panels A, B, and C show the true log teaching probabil-
ities plotted against approximations from uniform importance
sampling and sequential importance sampling (SIS). Each ap-
proximation was calculated using 1000 total samples. Each
point on the plot represents the exact and approximate log
probability for a pair of sampled documents with five words
each generated from three topics with a five-word vocabulary
(α = β = .5). Panel C shows the bias of the log of the es-
timators. Panel D shows the effective sample sizes (ESS) of
both of the estimators.

posterior within an acceptable error increases. We ran simu-
lations to evaluate the number of SIS samples, M , required
to achieve a relative sample error of 0.05 while calculating
the marginal likelihood with different values of n, T , α, and
β, and with W = 100. The relative error of the importance
samples is,

1√
M

√√√√√ 1
M

∑M
i=1 w

2
i(

1
M

∑M
i=1 wi

)2 − 1, (5)

where wi is an importance weight. Figure 2 displays the re-
sults, averaged over 1024 runs. The teaching probability of a
single sixty-word document under a twenty-topic model can
be calculated to within 0.05 relative sample error with about
one thousand samples. The number of samples required in-
creases linearly with the number of words. The values of α
and β effect scaling. As the model becomes sparser, a smaller
proportion of assignments hold most of the probability mass,
which makes high-mass areas more difficult for the sampler
to find, thus more samples are required for sparser models.



Figure 2: Number of samples to achieve 0.05 relative sample
error when calculating the marginal likelihood for the teach-
ing probability for single documents. Each point represents
the average over 1024 runs. Error bars represent the 95%
confidence interval.

5 Examples
5.1 Characterizing the teaching distribution
We can calculate Equation 3 exactly when using a small num-
ber of small documents with simple topic models. In Figure 3
we plot the teaching distribution of single, 10-word docu-
ments under several two-topic models with three-word vocab-
ularies, and α = β = 0.1.1 Documents were plotted by using
their normalized counts as barycenter coordinates.2 Docu-
ments with word proportions more consistent with a topic are
closer to that topic on the simplex.

Figure 3 shows that the teaching model assigns highest
density to documents that are closer to both topics while the
likelihood (the standard LDA model) assigns higher density
to the documents that are at the corners. Because α is low,
documents generated by LDA will mostly contain words gen-
erated by one topic; the teaching model suggests that choos-
ing documents between the two topics is better for teaching
both topics. Because β is low, most of the density in topics
is expected to lie in a small proportion of the words; this pre-
vents the teaching model from favoring documents centered
between the two topics, as when topics are well-separated
(Figure 3, top right).

To determine whether these data benefit learners, we pro-
vided LDA with teaching documents and documents drawn
randomly from LDA, then computed the error between the
inferred topics and the topics used to generate the documents.
We generated 64 sets each of one, two, three, and four 20-
word documents from the teaching model and from LDA.

1For simplicity, we use symmetric Dirichlet parameters where
α = c implies that each value in α is c.

2For example, a document d = [2, 1, 2, 1, 3, 2, 1, 2, 2, 2] with
counts [n1, n2, n3] = [3, 6, 1] would have the barycenter coordi-
nates (0.3, 0.6, 0.1).

We used the pseudo-marginal Metropolis-Hastings algorithm
to generate teaching documents. The document sets drawn
from LDA served as the starting state for each Markov Chain
and proposals were generated by randomly flipping a small
number of the words. The likelihood and teaching probabil-
ities were estimated using SIS. We ran LDA (eqn:lda-gibbs)
for 1000 iterations on each document pair. The topics were
derived from the counts and compared with the true topics
through sum squared error. Due to label switching in the
Gibbs sampler, we calculated the error between the true top-
ics and each label permutation of the inferred topics, and re-
port the minimum error across permutations. Figure 4 shows
that the documents from the teaching model produce lower
error, and that the effect is greater for fewer documents. As
the number of documents increases, the teaching model and
random generation produce similar learning outcomes.

Figure 4: Distribution of error between the inferred and true
topics as a function of the number of 20-word documents
drawn from the teaching (red) and LDA (random; blue) distri-
butions. Three ten-word topics comprise the true model and
α = β = 0.1.

The bulk of the benefit of teaching can be expected when
learning from fewer documents, but the number of documents
at which random and teaching-based sampling are equivalent
varies depending on the problem. As the number of topics
in the model increase and the the base distribution becomes
sparser (as α and β approach 0, random documents will con-
tain fewer topics with fewer likely, unique words), the equiv-
alence point will increase. In the above example, three teach-
ing documents were beneficial to teach a three-topic model,
but four teaching documents produced results similar to docu-
ments drawn randomly from LDA. This is consistent with the
idea that as the number of documents surpasses the number
of topics, there is an increasing probability that random sam-
pling will, by chance, represent all of the topics. If the the
model is not sparse (as α and β approach infinity), random
documents will contain more topics with more likely, unique
words and individual documents will become more similar.
When this is the case, relative gains due to teaching will be
reduced.



Figure 3: Comparison of the teaching and likelihood distribution representing the probability of selecting a single 10-word
document for a two-topic, three-word-vocabulary model where α = β = 0.1. The 3-dimensional density is represented with
barycenter coordinates, where each corner of the triangle represents a word. The two crosses on each plot represent the position
of the two topics. Documents are plotted by normalizing their word counts. (Top) The normalized teaching distribution. Darker
areas indicated higher density. (Middle) The normalized likelihood. (Bottom) The difference of the two distributions. Red
indicates areas in which the teaching distribution has higher density than the likelihood; blue indicates areas in which the
likelihood has higher density that the teaching distribution.

5.2 Internet Movie Database Top 1000
To explore the scalability and real-world implications of this
work, we applied the teaching model to select movie synopses
from the Internet Movie Database top 1000 movies [22]. The
synopses were processed in the standard way: stop words and
words that occur fewer than three times were removed, leav-
ing a vocabulary of 3276 words and 41430 total words across
1000 documents. The target topic model, which comprised
16 topics (the number topics that maximize the evidence for
α = 50/T and β = .1, see Griffiths & Steyvers [15]), was de-
rived from running LDA on the synopses. We start by finding
the single synopsis that best captures the entire topic model.
The teaching probability of each synopsis was calculated 16
independent times using 105 samples from SIS (see Figure 5,
top).

The best documents are those that represent the most top-
ics. The best teaching synopsis, Brokeback Mountain [23],
is longer than most (64 words) and represents many of
the topics—most of which contain drama keywords—though
many of the words come from two topics having to do with
working and friends/family going on trips. Drawing an anal-
ogy to Figure 3, the ideal single documents lie between top-
ics, but, in keeping with LDA’s sparsity, are closer to one than
the others; Brokeback Mountain exhibits these qualities.

Figure 5 shows that the likelihood and teaching probabil-
ities correlate to some extent, but that there are substantial
differences. Much of the benefit of the teaching probabil-
ity comes from considering all possible inferences (via the
marginal likelihood) and directing learners’ inferences to-
ward the target, but away from confusable alternatives.

In some circumstances, one may be interested in teaching
subsets of topics Φ∗ = {φ∗i , . . . , φ∗K} ⊂ Φ. This can be ac-
complished by marginalizing over the remaining topics. The

teacher would like to induce the target topics in the learner but
does not explicitly consider the other topics. The numerator
in Equation 3 becomes,

∏
φ∗∈Φ∗

f(φ∗ | β)
∑
z∈Z

(
K∏
k=1

DirCat(zk | α)

×
∏

t:φt 6∈Φ∗

DirCat(wt | β)

n∏
i

f(wi | φzi)1Φ∗(φzi)

)
, (6)

where wt is the set of words assigned to topic t.
To demonstrate this feature, we chose to teach a single

topic that roughly corresponded to war. Some of the most-
occurring words in the topic were war, American, team,
army, us/US, battle, mission, men, and British. We repeated
the procedure above, but used Equation 6 in place of Equa-
tion 3. Apocalypse Now [24], which sits atop IMDB’s Top
20 Greatest War Movies of All Time [25] is the best synop-
sis for teaching the war topic. The results (Figure 5, bottom)
again show that the teaching and likelihood distributions dif-
fer significantly. In fact, the two max likelihood synopses,
The Celebration [26] and Mr. Nobody [27] are both dramas
that have nothing to do with war.

To explore the spatial qualities of the teaching distribution,
we computed one minus the cosine distance between each
synopsis and the normalized sum of the target topics (Fig-
ure 5, red). 3 There is a negative correlation between the
cosine distance and the teaching probabilities both for docu-
ments under the full topic model (r(998) = −0.69, p ≈ 0)
and the war topic (r(998) = −0.93, p ≈ 0). This result

3One minus the cosine distance between two vectors, A and B,
is 0 when A and B are identical.



Figure 5: Comparison of normalized teaching probability (Navy), likelihood adjusted for the number of words in the document
(`1/w; gray), and one minus cosine between synopses and topic models (red) for the entire topic model (Top) and the war topic
(Bottom) of The Internet Movie Database top 1000 movies. The leftmost films have the highest probability under the teaching
model. Each point represents the mean of sixteen estimates. The standard errors of the estimates are represented, but are often
smaller than the points. The title of every 10th film is shown.

suggests that while selecting documents based on cosine dis-
tance is an effective heuristic for approximating teaching the
war topic, the teaching model selects documents that capture
a richer structure than this simpler approach. When searching
for the max teaching probability documents, one may employ
cosine distance to reduce the number of teaching probability
calculations by computing the teaching probability for only
low cosine distance documents.

6 Discussion
The problem of optimally selecting examples for teaching is
important across a variety of domains. A general yet scalable
method has been elusive because teaching requires simulat-
ing the learner. Whereas probabilistic learning can proceed
by drawing samples from the posterior distribution, teach-

ing requires approximating the distribution itself. Building
from advances in approximate inference, including pseudo-
marginal sampling and sequential importance sampling, we
introduced a general-purpose approach that provides an accu-
rate simulation-based approximation of optimal teaching ex-
amples, and demonstrate by selecting documents to teach the
distribution of topics from The Internet Movie Database top
1000 movies [22]. For this problem, simulations suggests that
Bayesian teaching scales linearly with the number of words in
the teaching document(s). Thought we applied our approach
to a problem much larger than could be managed by existing
general approaches to teaching, scaling to problems on the or-
der of teaching by selecting books, has yet to be realized. We
are optimistic about continued progress toward truly scalable
and practically realizable applications.
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